Witte O W, Speckmann E J, Walden J
Comp Biochem Physiol C Comp Pharmacol Toxicol. 1985;80(1):25-35. doi: 10.1016/0742-8413(85)90128-8.
A pharmacological separation of depolarizing and hyperpolarizing mechanisms involved in the generation of acetylcholine (ACh) depolarizations was attempted in the identified neurons B1 and B3 of the buccal ganglia of Helix pomatia. The selectivity of the drugs employed was assayed in non-identified buccal neurons in which ACh increased a hyperpolarizing Cl- conductance. Voltage clamp techniques were used. Under control conditions the depolarizing ACh currents increased non-linearly with more negative membrane potentials. The hyperpolarizing ACh currents showed a linear potential dependence. The buffer substance Tris (5 mmol/l) depressed the depolarizing ACh currents. The effect was accentuated with more negative membrane potentials. Tris failed to affect hyperpolarizing ACh responses. HEPES (5 mmol/l) did not change depolarizing or hyperpolarizing ACh responses. d-Tubocurarine (0.02-0.2 mmol/l), hexamethonium (0.5-5.0 mmol/l) and atropine (0.1 mmol/l) blocked the depolarizing and hyperpolarizing ACh responses. Arecoline (0.1 mmol/l) had neither an agonistic nor an antagonistic effect on the identified and on the non-identified neurons. It displayed an anticholinesterase activity. Anthracene-9-carbonic acid (0.5 mmol/l) depressed selectively the hyperpolarizing ACh responses. In the neurons B1 and B3 no pharmacologically separable hyperpolarizing ACh responses were detected to be superimposed on the ACh depolarizations.