Suppr超能文献

optCluster:一个用于确定最优聚类算法的R软件包。

optCluster: An R Package for Determining the Optimal Clustering Algorithm.

作者信息

Sekula Michael, Datta Somnath, Datta Susmita

机构信息

Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky, 40202, USA.

Department of Biostatistics, University of Florida, Gainesville, Florida, 32611, USA.

出版信息

Bioinformation. 2017 Mar 31;13(3):101-103. doi: 10.6026/97320630013101. eCollection 2017.

Abstract

UNLABELLED

There exist numerous programs and packages that perform validation for a given clustering solution; however, clustering algorithms fare differently as judged by different validation measures. If more than one performance measure is used to evaluate multiple clustering partitions, an optimal result is often difficult to determine by visual inspection alone. This paper introduces optCluster, an R package that uses a single function to simultaneously compare numerous clustering partitions (created by different algorithms and/or numbers of clusters) and obtain a "best" option for a given dataset. The method of weighted rank aggregation is utilized by this package to objectively aggregate various performance measure scores, thereby taking away the guesswork that often follows a visual inspection of cluster results. The optCluster package contains biological validation measures as well as clustering algorithms developed specifically for RNA sequencing data, making it a useful tool for clustering genomic data.

AVAILABILITY

This package is available for free through the Comprehensive R Archive Network (CRAN) at http://cran.rproject.org/web/packages/optCluster/.

摘要

未标注

有许多程序和软件包可对给定的聚类解决方案进行验证;然而,根据不同的验证指标来判断,聚类算法的表现有所不同。如果使用多个性能指标来评估多个聚类划分,仅通过目视检查往往很难确定最优结果。本文介绍了optCluster,这是一个R软件包,它使用单个函数同时比较多个聚类划分(由不同算法和/或聚类数量创建),并为给定数据集获得“最佳”选项。该软件包利用加权秩聚合方法客观地汇总各种性能指标得分,从而消除了对聚类结果进行目视检查后常常需要的猜测。optCluster软件包包含生物学验证指标以及专门为RNA测序数据开发的聚类算法,使其成为聚类基因组数据的有用工具。

可用性

该软件包可通过综合R存档网络(CRAN)免费获取,网址为http://cran.rproject.org/web/packages/optCluster/

相似文献

3
APCluster: an R package for affinity propagation clustering.APCluster:一个用于亲和传播聚类的 R 包。
Bioinformatics. 2011 Sep 1;27(17):2463-4. doi: 10.1093/bioinformatics/btr406. Epub 2011 Jul 6.
6
Model-based clustering for RNA-seq data.基于模型的 RNA-seq 数据聚类。
Bioinformatics. 2014 Jan 15;30(2):197-205. doi: 10.1093/bioinformatics/btt632. Epub 2013 Nov 4.
7
SimSeq: a nonparametric approach to simulation of RNA-sequence datasets.SimSeq:一种用于RNA序列数据集模拟的非参数方法。
Bioinformatics. 2015 Jul 1;31(13):2131-40. doi: 10.1093/bioinformatics/btv124. Epub 2015 Feb 26.
10
SillyPutty: Improved clustering by optimizing the silhouette width.SillyPutty:通过优化轮廓宽度实现聚类改进。
PLoS One. 2024 Jun 7;19(6):e0300358. doi: 10.1371/journal.pone.0300358. eCollection 2024.

引用本文的文献

1
SillyPutty: Improved clustering by optimizing the silhouette width.SillyPutty:通过优化轮廓宽度实现聚类改进。
PLoS One. 2024 Jun 7;19(6):e0300358. doi: 10.1371/journal.pone.0300358. eCollection 2024.
4
RNA localization during early development of the axolotl.蝾螈早期发育过程中的RNA定位
Front Cell Dev Biol. 2023 Oct 19;11:1260795. doi: 10.3389/fcell.2023.1260795. eCollection 2023.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验