Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China.
Nanoscale. 2017 Jul 20;9(28):9825-9833. doi: 10.1039/c7nr01913k.
Carbon-based electrothermal or photothermal actuators have attracted intense attention recently. They can directly convert electrical or light energy into thermal energy and exhibit obvious deformations. However, if the actuation mechanism is only limited to thermal expansion, the deformation amplitude is difficult to increase further. Moreover, complex shape-deformation is still challenging. Although a few materials were reported to realize twisting or untwisting actuation by cutting the samples into strips along different orientations, each single strip could perform only one shape-deformation mode. In this work, we propose multi-responsive actuators based on a graphene oxide (GO) and biaxially oriented polypropylene (BOPP) composite, which are designed with different shapes (strip-shape and helical-shape). The strip-shape GO/BOPP actuator shows great bending actuations when driven by humidity (curvature of up to 3.1 cm). Due to a developed dual-mode actuation mechanism, the actuator shows a bending curvature of 2.8 cm when driven by near infrared (NIR) light. The great actuation outperforms most other carbon-based actuators. Then, an intelligent robot based on the GO/BOPP composite is fabricated, which can switch between the protection mode and weightlifting mode with different external stimuli. Inspired from plant tendrils, a bioinspired helical GO/BOPP actuator is further realized to show both twisting and untwisting actuations in a single actuator, fully mimicking the deformation of plant tendrils. Finally, a robot arm consisting of strip-shape and helical GO/BOPP actuators can grasp an object that is 2.9 times heavier than itself, demonstrating promising bioinspired applications.
基于碳的电热或光热致动器最近受到了强烈关注。它们可以将电能或光能直接转化为热能,并表现出明显的变形。然而,如果致动机制仅限于热膨胀,那么变形幅度就很难进一步增加。此外,复杂的形状变形仍然具有挑战性。尽管有一些材料通过沿不同方向将样品切割成条带来实现扭转或解扭致动,但每个单独的条带只能执行一种形状变形模式。在这项工作中,我们提出了基于氧化石墨烯(GO)和双轴取向聚丙烯(BOPP)复合材料的多响应致动器,这些致动器设计有不同的形状(条形状和螺旋形状)。当由湿度驱动时,条形状 GO/BOPP 致动器表现出很大的弯曲致动(曲率可达 3.1cm)。由于开发了双模式致动机制,当由近红外(NIR)光驱动时,该致动器的弯曲曲率为 2.8cm。这种出色的致动性能超过了大多数其他基于碳的致动器。然后,基于 GO/BOPP 复合材料制造了一个智能机器人,它可以在不同的外部刺激下在保护模式和举重模式之间切换。受植物卷须的启发,进一步实现了仿生螺旋 GO/BOPP 致动器,在单个致动器中同时显示扭转和解扭致动,完全模拟了植物卷须的变形。最后,由条形状和螺旋形状 GO/BOPP 致动器组成的机器臂可以抓取自身重量 2.9 倍的物体,展示了有前景的仿生应用。