Biemolt Jasper, Denekamp Ilse M, Slot Thierry K, Rothenberg Gadi, Eisenberg David
Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098, XH, The Netherlands.
Current address: Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
ChemSusChem. 2017 Oct 23;10(20):4018-4024. doi: 10.1002/cssc.201700902. Epub 2017 Aug 15.
The specific capacitance of a highly porous, nitrogen-doped carbon is nearly tripled by orthogonal optimization of the microstructure and surface chemistry. First, the carbons' hierarchical pore structure and specific surface area were tweaked by controlling the temperature and sequence of the thermal treatments. The best process (pyrolysis at 900 °C, washing, and subsequent annealing at 1000 °C) yielded a carbon with a specific capacitance of 117 F g -nearly double that of a carbon made by a typical single-step synthesis at 700 °C. Following the structural optimization, the surface chemistry of the carbons was enriched by applying an oxidation routine based on a mixture of nitric and sulfuric acid in a 1:4 ratio at two different treatment temperatures (0 and 20 °C) and different treatment times. The optimal treatment times were 4 h at 0 °C and only 1 h at 20 °C. Overall, the specific capacitance nearly tripled relative to the original carbon, reaching 168 F g . The inherent nitrogen doping of the carbon comes into interplay with the acid-induced surface functionalization, creating a mixture of oxygen- and nitrogen-oxygen functionalities. The evolution of the surface chemistry was carefully followed by X-ray photoelectron spectroscopy and by N sorption porosimetry, revealing stepwise surface functionalization and simultaneous carbon etching. Overall, these processes are responsible for the peak-shaped capacitance trends in the carbons.
通过对微观结构和表面化学进行正交优化,高度多孔的氮掺杂碳的比电容几乎增加了两倍。首先,通过控制热处理的温度和顺序来调整碳材料的分级孔结构和比表面积。最佳工艺(在900°C下热解、洗涤,随后在1000°C下退火)得到的碳材料比电容为117 F g,几乎是通过典型的700°C单步合成法制备的碳材料比电容的两倍。在结构优化之后,通过在两种不同的处理温度(0和20°C)以及不同的处理时间下,采用基于1:4比例的硝酸和硫酸混合物的氧化程序,来丰富碳材料的表面化学性质。最佳处理时间在0°C时为4小时,在20°C时仅为1小时。总体而言,比电容相对于原始碳材料几乎增加了两倍,达到168 F g。碳材料固有的氮掺杂与酸诱导的表面功能化相互作用,形成了氧官能团和氮氧官能团的混合物。通过X射线光电子能谱和氮吸附孔隙率测定法仔细跟踪表面化学的演变,揭示了逐步的表面功能化和同时的碳蚀刻。总体而言,这些过程导致了碳材料中呈峰状的电容趋势。