Suppr超能文献

无弥散(3 + 1)维可积层级

Dispersionless (3+1)-dimensional integrable hierarchies.

作者信息

Błaszak Maciej, Sergyeyev Artur

机构信息

Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland.

Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 Opava, Czech Republic.

出版信息

Proc Math Phys Eng Sci. 2017 May;473(2201):20160857. doi: 10.1098/rspa.2016.0857. Epub 2017 May 10.

Abstract

In this paper, we introduce a multi-dimensional version of the -matrix approach to the construction of integrable hierarchies. Applying this method to the case of the Lie algebra of functions with respect to the contact bracket, we construct integrable hierarchies of (3+1)-dimensional dispersionless systems of the type recently introduced in Sergyeyev (2014 (http://arxiv.org/abs/1401.2122)).

摘要

在本文中,我们引入一种用于构建可积层级的矩阵方法的多维版本。将此方法应用于关于接触括号的函数李代数情形,我们构建了如Sergyeyev(2014(http://arxiv.org/abs/1401.2122))中最近引入的那种类型的(3 + 1)维无弥散系统的可积层级。

相似文献

1
Dispersionless (3+1)-dimensional integrable hierarchies.无弥散(3 + 1)维可积层级
Proc Math Phys Eng Sci. 2017 May;473(2201):20160857. doi: 10.1098/rspa.2016.0857. Epub 2017 May 10.
6
On a class of integrable Hamiltonian equations in 2+1 dimensions.关于一类二维加一维的可积哈密顿方程。
Proc Math Phys Eng Sci. 2021 May 26;477(2249):20210047. doi: 10.1098/rspa.2021.0047.
8
[Formula: see text] graded discrete Lax pairs and Yang-Baxter maps.[公式:见正文] 分级离散拉克斯对和杨-巴克斯特映射。
Proc Math Phys Eng Sci. 2017 May;473(2201):20160946. doi: 10.1098/rspa.2016.0946. Epub 2017 May 31.

本文引用的文献

1
Modelling of nonlinear wave scattering in a delaminated elastic bar.分层弹性杆中非线性波散射的建模
Proc Math Phys Eng Sci. 2015 Nov 8;471(2183):20150584. doi: 10.1098/rspa.2015.0584.
2
On integrable conservation laws.关于可积守恒律。
Proc Math Phys Eng Sci. 2015 Jan 8;471(2173):20140124. doi: 10.1098/rspa.2014.0124.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验