Tamhane Ajit C, Gou Jiangtao, Jennison Christopher, Mehta Cyrus R, Curto Teresa
Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208, U.S.A.
Department of Mathematics and Statistics, Hunter College, New York, New York 10065, U.S.A.
Biometrics. 2018 Mar;74(1):40-48. doi: 10.1111/biom.12732. Epub 2017 Jun 6.
Glimm et al. (2010) and Tamhane et al. (2010) studied the problem of testing a primary and a secondary endpoint, subject to a gatekeeping constraint, using a group sequential design (GSD) with K=2 looks. In this article, we greatly extend the previous results to multiple (K>2) looks. If the familywise error rate (FWER) is to be controlled at a preassigned α level then it is clear that the primary boundary must be of level α. We show under what conditions one α-level primary boundary is uniformly more powerful than another. Based on this result, we recommend the choice of the O'Brien and Fleming (1979) boundary over the Pocock (1977) boundary for the primary endpoint. For the secondary endpoint the choice of the boundary is more complicated since under certain conditions the secondary boundary can be refined to have a nominal level α'>α, while still controlling the FWER at level α, thus boosting the secondary power. We carry out secondary power comparisons via simulation between different choices of primary-secondary boundary combinations. The methodology is applied to the data from the RALES study (Pitt et al., 1999; Wittes et al., 2001). An R library package gsrsb to implement the proposed methodology is made available on CRAN.
格林姆等人(2010年)以及塔姆哈尼等人(2010年)研究了在守门约束条件下,使用具有K = 2次观测的成组序贯设计(GSD)来检验一个主要终点和一个次要终点的问题。在本文中,我们将先前的结果大幅扩展到了多次(K>2)观测的情况。如果要将家族性错误率(FWER)控制在预先设定的α水平,那么显然主要边界必须是α水平。我们展示了在何种条件下,一个α水平的主要边界比另一个边界具有一致更强的检验效能。基于这一结果,我们建议对于主要终点,选择奥布赖恩和弗莱明(1979年)的边界而非波科克(1977年)的边界。对于次要终点,边界的选择更为复杂,因为在某些条件下,次要边界可以细化为具有名义水平α'>α,同时仍将FWER控制在α水平,从而提高次要检验效能。我们通过模拟对不同主要 - 次要边界组合的选择进行次要检验效能比较。该方法应用于RALES研究(皮特等人,1999年;维茨等人,2001年)的数据。一个用于实现所提出方法的R语言库包gsrsb已在CRAN上提供。