Suppr超能文献

在具有延长期的两阶段成组序贯试验中对一个主要终点和两个次要终点进行检验。

Testing One Primary and Two Secondary Endpoints in a Two-Stage Group Sequential Trial With Extensions.

作者信息

Tamhane Ajit C, Xi Dong, Mehta Cyrus R, Romanenko Alexander, Gou Jiangtao

机构信息

Northwestern University, Evanston, Illinois, USA.

Gilead Sciences, Inc., Foster City, California, USA.

出版信息

Stat Med. 2025 Feb 10;44(3-4):e10346. doi: 10.1002/sim.10346.

Abstract

We study the problem of testing multiple secondary endpoints conditional on a primary endpoint being significant in a two-stage group sequential procedure, focusing on two secondary endpoints. This extends our previous work with one secondary endpoint. The test for the secondary null hypotheses is a closed procedure. Application of the Bonferroni test for testing the intersection of the secondary hypotheses results in the Holm procedure while application of the Simes test results in the Hochberg procedure. The focus of the present paper is on developing normal theory analogs of the abovementioned -value based tests that take into account (i) the gatekeeping effect of the test on the primary endpoint and (ii) correlations between the endpoints. The normal theory boundaries are determined by finding the least favorable configuration of the correlations and so their knowledge is not needed to apply these procedures. The -value based procedures are easy to apply but they are less powerful than their normal theory analogs because they do not take into account the correlations between the endpoints and the gatekeeping effect referred to above. On the other hand, the normal theory procedures are restricted to two secondary endpoints and two stages mainly because of computational difficulties with more than two secondary endpoints and stages. Comparisons between the two types of procedures are given in terms of secondary powers. The sensitivity of the secondary type I error rate and power to unequal information times is studied. Numerical examples and a real case study illustrate the procedures.

摘要

我们研究在两阶段成组序贯设计中,在一个主要终点显著的条件下对多个次要终点进行检验的问题,重点关注两个次要终点。这扩展了我们之前关于一个次要终点的工作。对次要原假设的检验是一个封闭程序。应用Bonferroni检验来检验次要假设的交集会得到Holm程序,而应用Simes检验会得到Hochberg程序。本文的重点是开发上述基于P值检验的正态理论类似方法,该方法考虑了(i)检验对主要终点的把关效应,以及(ii)终点之间的相关性。正态理论边界是通过找到相关性的最不利配置来确定的,因此应用这些程序不需要知道它们。基于P值的程序易于应用,但它们的功效低于其正态理论类似方法,因为它们没有考虑终点之间的相关性以及上述的把关效应。另一方面,正态理论程序主要限于两个次要终点和两个阶段,这主要是由于有超过两个次要终点和阶段时存在计算困难。两种类型的程序之间的比较是根据次要功效给出的。研究了次要I型错误率和功效对不等信息时间的敏感性。数值例子和一个实际案例研究说明了这些程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d929/11758265/b7bd8847a179/SIM-44-0-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验