Suppr超能文献

利用多组学数据对玉米农艺性状进行预测和关联分析

Prediction and association mapping of agronomic traits in maize using multiple omic data.

作者信息

Xu Y, Xu C, Xu S

机构信息

Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.

Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, China.

出版信息

Heredity (Edinb). 2017 Sep;119(3):174-184. doi: 10.1038/hdy.2017.27. Epub 2017 Jun 7.

Abstract

Genomic selection holds a great promise to accelerate plant breeding via early selection before phenotypes are measured, and it offers major advantages over marker-assisted selection for highly polygenic traits. In addition to genomic data, metabolome and transcriptome are increasingly receiving attention as new data sources for phenotype prediction. We used data available from maize as a model to compare the predictive abilities of three different omic data sources using eight representative methods for six traits. We found that the best linear unbiased prediction overall performs better than other methods across different traits and different omic data, and genomic prediction performs better than transcriptomic and metabolomic predictions. For the same maize data, we also conducted genome-wide association study, transcriptome-wide association studies and metabolome-wide association studies for the six agronomic traits using both the genome-wide efficient mixed model association (GEMMA) method and a modified least absolute shrinkage and selection operator (LASSO) method. The new LASSO method has the ability to perform statistical tests. Simulation studies show that the modified LASSO performs better than GEMMA in terms of high power and low Type 1 error.

摘要

基因组选择有望通过在测量表型之前进行早期选择来加速植物育种,并且对于高度多基因性状而言,它比标记辅助选择具有显著优势。除了基因组数据外,代谢组和转录组作为表型预测的新数据源也越来越受到关注。我们以玉米数据为模型,使用八种代表性方法对六个性状比较了三种不同组学数据源的预测能力。我们发现,总体上最佳线性无偏预测在不同性状和不同组学数据中表现优于其他方法,并且基因组预测比转录组和代谢组预测表现更好。对于相同的玉米数据,我们还使用全基因组高效混合模型关联(GEMMA)方法和改进的最小绝对收缩和选择算子(LASSO)方法,对六个农艺性状进行了全基因组关联研究、转录组全关联研究和代谢组全关联研究。新的LASSO方法具有进行统计检验的能力。模拟研究表明,改进的LASSO在高功效和低一类错误方面比GEMMA表现更好。

相似文献

2
Metabolome-wide association studies for agronomic traits of rice.基于代谢组学的水稻农艺性状全基因组关联分析。
Heredity (Edinb). 2018 Apr;120(4):342-355. doi: 10.1038/s41437-017-0032-3. Epub 2017 Dec 11.
6
Transcriptome-Based Prediction of Complex Traits in Maize.基于转录组的玉米复杂性状预测。
Plant Cell. 2020 Jan;32(1):139-151. doi: 10.1105/tpc.19.00332. Epub 2019 Oct 22.

引用本文的文献

2
Incorporating gene expression and environment for genomic prediction in wheat.整合基因表达与环境用于小麦基因组预测
Front Plant Sci. 2025 May 6;16:1506434. doi: 10.3389/fpls.2025.1506434. eCollection 2025.
5
Metabolic marker-assisted genomic prediction improves hybrid breeding.代谢标记辅助基因组预测改善杂交育种。
Plant Commun. 2025 Mar 10;6(3):101199. doi: 10.1016/j.xplc.2024.101199. Epub 2024 Nov 29.
6
Climate Change-The Rise of Climate-Resilient Crops.气候变化——气候适应性作物的崛起
Plants (Basel). 2024 Feb 8;13(4):490. doi: 10.3390/plants13040490.

本文引用的文献

4
Predicting hybrid performance in rice using genomic best linear unbiased prediction.利用基因组最佳线性无偏预测法预测水稻杂种表现
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12456-61. doi: 10.1073/pnas.1413750111. Epub 2014 Aug 11.
6
Genomic selection: genome-wide prediction in plant improvement.基因组选择:植物改良中的全基因组预测。
Trends Plant Sci. 2014 Sep;19(9):592-601. doi: 10.1016/j.tplants.2014.05.006. Epub 2014 Jun 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验