Suppr超能文献

使用BGLR统计软件包进行全基因组回归与预测。

Genome-wide regression and prediction with the BGLR statistical package.

作者信息

Pérez Paulino, de los Campos Gustavo

机构信息

Socio Economía Estadística e Informática, Colegio de Postgraduados 56230, México

Department of Biostatistics, Section on Statistical Genetics, University of Alabama, Birmingham, Alabama 35294.

出版信息

Genetics. 2014 Oct;198(2):483-95. doi: 10.1534/genetics.114.164442. Epub 2014 Jul 9.

Abstract

Many modern genomic data analyses require implementing regressions where the number of parameters (p, e.g., the number of marker effects) exceeds sample size (n). Implementing these large-p-with-small-n regressions poses several statistical and computational challenges, some of which can be confronted using Bayesian methods. This approach allows integrating various parametric and nonparametric shrinkage and variable selection procedures in a unified and consistent manner. The BGLR R-package implements a large collection of Bayesian regression models, including parametric variable selection and shrinkage methods and semiparametric procedures (Bayesian reproducing kernel Hilbert spaces regressions, RKHS). The software was originally developed for genomic applications; however, the methods implemented are useful for many nongenomic applications as well. The response can be continuous (censored or not) or categorical (either binary or ordinal). The algorithm is based on a Gibbs sampler with scalar updates and the implementation takes advantage of efficient compiled C and Fortran routines. In this article we describe the methods implemented in BGLR, present examples of the use of the package, and discuss practical issues emerging in real-data analysis.

摘要

许多现代基因组数据分析需要进行参数数量(p,例如标记效应的数量)超过样本量(n)的回归分析。实施这些大p小n回归分析面临着一些统计和计算挑战,其中一些挑战可以通过贝叶斯方法来应对。这种方法允许以统一和一致的方式整合各种参数和非参数收缩及变量选择程序。BGLR R包实现了大量贝叶斯回归模型,包括参数变量选择和收缩方法以及半参数程序(贝叶斯再生核希尔伯特空间回归,RKHS)。该软件最初是为基因组应用而开发的;然而,所实现的方法对许多非基因组应用也很有用。响应可以是连续的(有删失或无删失)或分类的(二元或有序)。该算法基于具有标量更新的吉布斯采样器,并且实现利用了高效的编译C和Fortran例程。在本文中,我们描述了BGLR中实现的方法,给出了该包的使用示例,并讨论了实际数据分析中出现的实际问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4461/4196607/93dd6a217e88/483fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验