Experimental Physics III, University of Bayreuth , Universitätsstraße 30, 95447 Bayreuth, Germany.
Max-Planck-Institute for Solid State Research , Heisenbergstraße 1, 70569 Stuttgart, Germany.
Nano Lett. 2017 Jul 12;17(7):4291-4296. doi: 10.1021/acs.nanolett.7b01284. Epub 2017 Jun 13.
Quantum photonics holds great promise for future technologies such as secure communication, quantum computation, quantum simulation, and quantum metrology. An outstanding challenge for quantum photonics is to develop scalable miniature circuits that integrate single-photon sources, linear optical components, and detectors on a chip. Plasmonic nanocircuits will play essential roles in such developments. However, for quantum plasmonic circuits, integration of stable, bright, and narrow-band single photon sources in the structure has so far not been reported. Here we present a plasmonic nanocircuit driven by a self-assembled GaAs quantum dot. Through a planar dielectric-plasmonic hybrid waveguide, the quantum dot efficiently excites narrow-band single plasmons that are guided in a two-wire transmission line until they are converted into single photons by an optical antenna. Our work demonstrates the feasibility of fully on-chip plasmonic nanocircuits for quantum optical applications.
量子光子学在未来技术方面具有巨大的潜力,例如安全通信、量子计算、量子模拟和量子计量学。量子光子学的一个突出挑战是开发可扩展的微型电路,将单光子源、线性光学元件和探测器集成在一个芯片上。等离子体纳米电路将在这些发展中发挥重要作用。然而,对于量子等离子体电路,在结构中集成稳定、明亮和窄带单光子源迄今尚未报道。在这里,我们展示了一个由自组装 GaAs 量子点驱动的等离子体纳米电路。通过平面介电-等离子体混合波导,量子点有效地激发了窄带单等离子体,这些等离子体在双丝传输线中被引导,直到它们被光学天线转换为单光子。我们的工作证明了用于量子光学应用的全片上等离子体纳米电路的可行性。