Suppr超能文献

在单片半导体-超导平台上实现全片上单光子的 Hanbury-Brown 和 Twiss 实验。

Fully On-Chip Single-Photon Hanbury-Brown and Twiss Experiment on a Monolithic Semiconductor-Superconductor Platform.

机构信息

Institut für Halbleiteroptik und Funktionelle Grenzfiächen, Center for Integrated Quantum Science and Technology (IQST) and SCoPE , University of Stuttgart , Allmandring 3 , 70569 Stuttgart , Germany.

Institute of Micro- and Nanoelectronic Systems , Karlsruhe Institute of Technology (KIT) , Hertzstrasse 16 , 76187 Karlsruhe , Germany.

出版信息

Nano Lett. 2018 Nov 14;18(11):6892-6897. doi: 10.1021/acs.nanolett.8b02794. Epub 2018 Oct 19.

Abstract

Fully integrated quantum photonic circuits show a clear advantage in terms of stability and scalability compared to tabletop implementations. They will constitute a fundamental breakthrough in integrated quantum technologies, as a matter of example, in quantum simulation and quantum computation. Despite the fact that only a few building blocks are strictly necessary, their simultaneous realization is highly challenging. This is especially true for the simultaneous implementation of all three key components on the same chip: single-photon sources, photonic logic, and single-photon detectors. Here, we present a fully integrated Hanbury-Brown and Twiss setup on a micrometer-sized footprint consisting of a GaAs waveguide embedding quantum dots as single-photon sources, a waveguide beamsplitter, and two superconducting nanowire single-photon detectors. This enables a second-order correlation measurement on the single-photon level under both continuous-wave and pulsed resonant excitation. The presented proof-of-principle experiment proves the simultaneous realization and operation of all three key building blocks and therefore a major step towards fully integrated quantum optical chips.

摘要

与台式设备相比,完全集成的量子光子学电路在稳定性和可扩展性方面具有明显优势。它们将成为集成量子技术的重大突破,例如在量子模拟和量子计算方面。尽管仅需要少数几个基本组件,但同时实现它们具有很高的挑战性。对于在同一芯片上同时实现所有三个关键组件,这一点尤其如此:单光子源、光子逻辑和单光子探测器。在这里,我们展示了一个完全集成的 Hanbury-Brown 和 Twiss 装置,其尺寸为微毫米级,由嵌入量子点的砷化镓波导作为单光子源、波导分束器和两个超导纳米线单光子探测器组成。这使得在连续波和脉冲共振激发下都能够在单光子水平上进行二阶相关测量。所提出的原理验证实验证明了所有三个关键构建块的同时实现和操作,因此朝着完全集成的量子光学芯片迈出了重要一步。

相似文献

1
Fully On-Chip Single-Photon Hanbury-Brown and Twiss Experiment on a Monolithic Semiconductor-Superconductor Platform.
Nano Lett. 2018 Nov 14;18(11):6892-6897. doi: 10.1021/acs.nanolett.8b02794. Epub 2018 Oct 19.
3
Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.
Nano Lett. 2017 Dec 13;17(12):7394-7400. doi: 10.1021/acs.nanolett.7b03220. Epub 2017 Nov 17.
6
Hanbury Brown-Twiss effect without two-photon interference in photon counting regime.
Sci Rep. 2017 May 19;7(1):2145. doi: 10.1038/s41598-017-02408-6.
7
On-Chip Generation, Routing, and Detection of Resonance Fluorescence.
Nano Lett. 2015 Aug 12;15(8):5208-13. doi: 10.1021/acs.nanolett.5b01444. Epub 2015 Jul 10.
8
Correlation Measurements for Carbon Nanotubes with Quantum Defects.
ACS Nano. 2024 Apr 2;18(13):9525-9534. doi: 10.1021/acsnano.3c12530. Epub 2024 Mar 21.
9
Controlled integration of selected detectors and emitters in photonic integrated circuits.
Opt Express. 2019 Feb 4;27(3):3710-3716. doi: 10.1364/OE.27.003710.
10
On-Chip Waveguide Coupling of a Layered Semiconductor Single-Photon Source.
Nano Lett. 2017 Sep 13;17(9):5446-5451. doi: 10.1021/acs.nanolett.7b02092. Epub 2017 Aug 18.

引用本文的文献

1
Deep learning accelerated discovery of photonic power dividers.
Nanophotonics. 2023 Mar 3;12(7):1255-1269. doi: 10.1515/nanoph-2022-0715. eCollection 2023 Apr.
3
Advanced technologies for quantum photonic devices based on epitaxial quantum dots.
Adv Quantum Technol. 2020 Feb;3(2). doi: 10.1002/qute.201900034.
4
On-chip generation and dynamic piezo-optomechanical rotation of single photons.
Nat Commun. 2022 Nov 16;13(1):6998. doi: 10.1038/s41467-022-34372-9.
7
Room-temperature single-photon emitters in silicon nitride.
Sci Adv. 2021 Dec 10;7(50):eabj0627. doi: 10.1126/sciadv.abj0627.
8
Hybrid integrated quantum photonic circuits.
Nat Photonics. 2020;14(5). doi: 10.1038/s41566-020-0609-x.
9
Collapse dynamics and Hilbert-space stochastic processes.
Sci Rep. 2021 Nov 12;11(1):22179. doi: 10.1038/s41598-021-00737-1.
10
Quantum key distribution with entangled photons generated on demand by a quantum dot.
Sci Adv. 2021 Mar 19;7(12). doi: 10.1126/sciadv.abe6379. Print 2021 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验