Suppr超能文献

等离子体电路中的量子干涉。

Quantum interference in plasmonic circuits.

机构信息

Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands.

出版信息

Nat Nanotechnol. 2013 Oct;8(10):719-22. doi: 10.1038/nnano.2013.150. Epub 2013 Aug 11.

Abstract

Surface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal/dielectric interfaces. This interaction allows subwavelength confinement of light beyond the diffraction limit inherent to dielectric structures. As a result, the intensity of the electromagnetic field is enhanced, with the possibility to increase the strength of the optical interactions between waveguides, light sources and detectors. Plasmons maintain non-classical photon statistics and preserve entanglement upon transmission through thin, patterned metallic films or weakly confining waveguides. For quantum applications, it is essential that plasmons behave as indistinguishable quantum particles. Here we report on a quantum interference experiment in a nanoscale plasmonic circuit consisting of an on-chip plasmon beamsplitter with integrated superconducting single-photon detectors to allow efficient single plasmon detection. We demonstrate a quantum-mechanical interaction between pairs of indistinguishable surface plasmons by observing Hong-Ou-Mandel (HOM) interference, a hallmark non-classical interference effect that is the basis of linear optics-based quantum computation. Our work shows that it is feasible to shrink quantum optical experiments to the nanoscale and offers a promising route towards subwavelength quantum optical networks.

摘要

表面等离激元(等离子体)是光与金属/电介质界面处自由电子等离子体集体振荡的组合。这种相互作用允许光在亚波长范围内限制,超越了介电结构固有的衍射极限。因此,电磁场的强度得到增强,有可能增强波导、光源和探测器之间的光学相互作用强度。等离子体保持非经典光子统计特性,并在通过薄的、图案化的金属膜或弱约束波导传输时保持纠缠。对于量子应用,等离子体必须表现为不可区分的量子粒子是至关重要的。在这里,我们报告了一个纳米级等离子体电路中的量子干涉实验,该电路由片上等离子体分束器和集成的超导单光子探测器组成,以允许高效的单个等离子体检测。我们通过观察 Hong-Ou-Mandel(HOM)干涉来证明了不可区分的表面等离子体之间的量子力学相互作用,HOM 干涉是一种非经典干涉效应的标志,是基于线性光学的量子计算的基础。我们的工作表明,将量子光学实验缩小到纳米级是可行的,并为亚波长量子光学网络提供了一条有前途的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验