Suppr超能文献

罗丹明衍生物对单个α-溶血素孔道的阻断作用

Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives.

作者信息

Rokitskaya Tatyana I, Nazarov Pavel A, Golovin Andrey V, Antonenko Yuri N

机构信息

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.

出版信息

Biophys J. 2017 Jun 6;112(11):2327-2335. doi: 10.1016/j.bpj.2017.04.041.

Abstract

Measurements of ion conductance through α-hemolysin pore in a bilayer lipid membrane revealed blocking of the ion channel by a series of rhodamine 19 and rhodamine B esters. The longest dwell closed time of the blocking was observed with rhodamine 19 butyl ester (C4R1), whereas the octyl ester (C8R1) was of poor effect. Voltage asymmetry in the binding kinetics indicated that rhodamine derivatives bound to the stem part of the aqueous pore lumen. The binding frequency was proportional to a quadratic function of rhodamine concentrations, thereby showing that the dominant binding species were rhodamine dimers. Two levels of the pore conductance and two dwell closed times of the pore were found. The dwell closed times lengthened as the voltage increased, suggesting impermeability of the channel for the ligands. Molecular docking analysis revealed two distinct binding sites within the lumen of the stem of the α-hemolysin pore for the C4R1 dimer, but only one binding site for the C8R1 dimer. The blocking of the α-hemolysin nanopore by rhodamines could be utilized in DNA sequencing as additional optical sensing owing to bright fluorescence of rhodamines if used for DNA labeling.

摘要

对双层脂质膜中通过α-溶血素孔的离子电导进行测量,结果显示一系列罗丹明19和罗丹明B酯会阻断离子通道。用罗丹明19丁酯(C4R1)观察到阻断的最长关闭停留时间,而辛酯(C8R1)的效果较差。结合动力学中的电压不对称表明罗丹明衍生物与水相孔腔的茎部结合。结合频率与罗丹明浓度的二次函数成正比,从而表明主要的结合物种是罗丹明二聚体。发现了两种水平的孔电导和孔的两种关闭停留时间。关闭停留时间随着电压升高而延长,这表明通道对配体不可渗透。分子对接分析揭示了α-溶血素孔茎部腔室内C4R1二聚体有两个不同的结合位点,但C8R1二聚体只有一个结合位点。如果将罗丹明用于DNA标记,由于其明亮的荧光,罗丹明对α-溶血素纳米孔的阻断可作为额外的光学传感用于DNA测序。

相似文献

1
Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives.
Biophys J. 2017 Jun 6;112(11):2327-2335. doi: 10.1016/j.bpj.2017.04.041.
2
Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map.
Biophys J. 2005 Jun;88(6):3745-61. doi: 10.1529/biophysj.104.058727. Epub 2005 Mar 11.
3
Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore.
Science. 1996 Dec 13;274(5294):1859-66. doi: 10.1126/science.274.5294.1859.
4
Voltage-driven DNA translocations through a nanopore.
Phys Rev Lett. 2001 Apr 9;86(15):3435-8. doi: 10.1103/PhysRevLett.86.3435.
7
Interactions of peptides with a protein pore.
Biophys J. 2005 Aug;89(2):1030-45. doi: 10.1529/biophysj.104.057406. Epub 2005 May 27.
8
5- and 4'-Hydroxylated flavonoids affect voltage gating of single alpha-hemolysin pore.
Biochim Biophys Acta. 2011 Aug;1808(8):2051-8. doi: 10.1016/j.bbamem.2011.04.005. Epub 2011 Apr 17.
10
Controlling a single protein in a nanopore through electrostatic traps.
J Am Chem Soc. 2008 Mar 26;130(12):4081-8. doi: 10.1021/ja710787a. Epub 2008 Mar 6.

引用本文的文献

1
Rhodamine 19 Alkyl Esters as Effective Antibacterial Agents.
Int J Mol Sci. 2024 Jun 2;25(11):6137. doi: 10.3390/ijms25116137.
2
Mitochondrial ATP Synthase and Mild Uncoupling by Butyl Ester of Rhodamine 19, C4R1.
Antioxidants (Basel). 2023 Mar 4;12(3):646. doi: 10.3390/antiox12030646.
3
Molecular Mechanisms Responsible for Pharmacological Effects of Genipin on Mitochondrial Proteins.
Biophys J. 2019 Nov 19;117(10):1845-1857. doi: 10.1016/j.bpj.2019.10.021. Epub 2019 Oct 24.
4
Two residues in α-hemolysin related to hemolysis and self-assembly.
Infect Drug Resist. 2018 Aug 21;11:1271-1274. doi: 10.2147/IDR.S167779. eCollection 2018.

本文引用的文献

1
On 'three decades of nanopore sequencing'.
Nat Biotechnol. 2016 May 6;34(5):481-2. doi: 10.1038/nbt.3570.
2
Parameterization of the DFTB3 method for Br, Ca, Cl, F, I, K, and Na in organic and biological systems.
J Chem Theory Comput. 2015 Jan 13;11(1):332-42. doi: 10.1021/ct5009137.
3
Parametrization and Benchmark of DFTB3 for Organic Molecules.
J Chem Theory Comput. 2013 Jan 8;9(1):338-54. doi: 10.1021/ct300849w. Epub 2012 Nov 26.
4
Analytical applications for pore-forming proteins.
Biochim Biophys Acta. 2016 Mar;1858(3):593-606. doi: 10.1016/j.bbamem.2015.09.023. Epub 2015 Oct 22.
5
Nucleobase Recognition by Truncated α-Hemolysin Pores.
ACS Nano. 2015 Aug 25;9(8):7895-903. doi: 10.1021/nn5060317. Epub 2015 Jul 28.
6
Molecular simulation studies of hydrophobic gating in nanopores and ion channels.
Biochem Soc Trans. 2015 Apr;43(2):146-50. doi: 10.1042/BST20140256.
7
Designing a hydrophobic barrier within biomimetic nanopores.
ACS Nano. 2014 Nov 25;8(11):11268-79. doi: 10.1021/nn503930p. Epub 2014 Oct 20.
8
A short-chain alkyl derivative of Rhodamine 19 acts as a mild uncoupler of mitochondria and a neuroprotector.
Biochim Biophys Acta. 2014 Oct;1837(10):1739-47. doi: 10.1016/j.bbabio.2014.07.006. Epub 2014 Jul 16.
10
DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB).
J Chem Theory Comput. 2012 Apr 10;7(4):931-948. doi: 10.1021/ct100684s.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验