Suppr超能文献

非共价分子适配体β-环糊精与葡萄球菌α-溶血素孔的相互作用。

Interaction of the noncovalent molecular adapter, beta-cyclodextrin, with the staphylococcal alpha-hemolysin pore.

作者信息

Gu L Q, Bayley H

机构信息

Department of Medical Biochemistry and Genetics, The Texas A & M University System Health Science Center, College Station, Texas 77843-1114, USA.

出版信息

Biophys J. 2000 Oct;79(4):1967-75. doi: 10.1016/S0006-3495(00)76445-9.

Abstract

Cyclodextrins act as noncovalent molecular adapters when lodged in the lumen of the alpha-hemolysin (alphaHL) pore. The adapters act as binding sites for channel blockers, thereby offering a basis for the detection of a variety of organic molecules with alphaHL as a biosensor element. To further such studies, it is important to find conditions under which the dwell time of cyclodextrins in the lumen of the pore is extended. Here, we use single-channel recording to explore the pH- and voltage-dependence of the interaction of beta-cyclodextrin (betaCD) with alphaHL. betaCD can access its binding site only from the trans entrance of pores inserted from the cis side of a bilayer. Analysis of the binding kinetics shows that there is a single binding site for betaCD, with an apparent equilibrium dissociation constant that varies by >100-fold under the conditions explored. The dissociation rate constant for the neutral betaCD molecule varies with pH and voltage, a result that is incompatible with two states of the alphaHL pore, one of high and the other of low affinity. Rather, the data suggest that the actual equilibrium dissociation constant for the alphaHL. betaCD complex varies continuously with the transmembrane potential.

摘要

环糊精嵌入α-溶血素(αHL)孔腔时可作为非共价分子适配体。这些适配体可作为通道阻滞剂的结合位点,从而为以αHL作为生物传感器元件检测多种有机分子提供了基础。为进一步开展此类研究,找到能延长环糊精在孔腔内停留时间的条件很重要。在此,我们采用单通道记录法来探究β-环糊精(βCD)与αHL相互作用的pH依赖性和电压依赖性。βCD只能从双层膜顺式侧插入的孔的反式入口进入其结合位点。结合动力学分析表明,βCD存在一个单一结合位点,在所探究的条件下其表观平衡解离常数变化超过100倍。中性βCD分子的解离速率常数随pH和电压而变化,这一结果与αHL孔的两种状态(一种高亲和力状态和另一种低亲和力状态)不相符。相反,数据表明αHL-βCD复合物的实际平衡解离常数随跨膜电位连续变化。

相似文献

4
Capture of a single molecule in a nanocavity.在纳米腔中捕获单个分子。
Science. 2001 Jan 26;291(5504):636-40. doi: 10.1126/science.291.5504.636.
5
Electroosmotic enhancement of the binding of a neutral molecule to a transmembrane pore.电渗增强中性分子与跨膜孔的结合
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15498-503. doi: 10.1073/pnas.2531778100. Epub 2003 Dec 15.
10
Protein nanopores with covalently attached molecular adapters.带有共价连接分子适配体的蛋白质纳米孔。
J Am Chem Soc. 2007 Dec 26;129(51):16142-8. doi: 10.1021/ja0761840. Epub 2007 Nov 30.

引用本文的文献

2
Nanopore sensing: A physical-chemical approach.纳孔传感:物理化学方法。
Biochim Biophys Acta Biomembr. 2021 Sep 1;1863(9):183644. doi: 10.1016/j.bbamem.2021.183644. Epub 2021 May 11.
5
Biophysics and the Genomic Sciences.生物物理学与基因组科学。
Biophys J. 2019 Dec 3;117(11):2047-2053. doi: 10.1016/j.bpj.2019.07.038. Epub 2019 Jul 30.
10
Peptide-Mediated Nanopore Detection of Uranyl Ions in Aqueous Media.肽介导的水相介质中铀酰离子的纳米孔检测
ACS Sens. 2017 May 26;2(5):703-709. doi: 10.1021/acssensors.7b00210. Epub 2017 May 4.

本文引用的文献

3
Introduction and General Overview of Cyclodextrin Chemistry.环糊精化学的介绍与概述
Chem Rev. 1998 Jul 30;98(5):1743-1754. doi: 10.1021/cr970022c.
4
Cyclodextrins: Introduction.环糊精:引言
Chem Rev. 1998 Jul 30;98(5):1741-1742. doi: 10.1021/cr980027p.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验