Schmidt Anke, Bekeschus Sander, Jablonowski Helena, Barton Annemarie, Weltmann Klaus-Dieter, Wende Kristian
Plasma Life Science, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany.
Center for Innovation Competence (ZIK) Plasmatis, Greifswald, Germany.
Biophys J. 2017 Jun 6;112(11):2397-2407. doi: 10.1016/j.bpj.2017.04.030.
A particularly promising medical application of cold physical plasma is the support of wound healing. This is presumably achieved by modulating inflammation as well as skin cell signaling and migration. Plasma-derived reactive oxygen and nitrogen species (ROS/RNS) are assumed the central biologically active plasma components. We hypothesized that modulating the environmental plasma conditions from pure nitrogen (N) to pure oxygen (O) in an atmospheric pressure argon plasma jet (kINPen) will change type and concentration of ROS/RNS and effectively tune the behavior of human skin cells. To investigate this, HaCaT keratinocytes were studied in vitro with regard to cell metabolism, viability, growth, gene expression signature, and cytokine secretion. Flow cytometry demonstrated only slight effects on cytotoxicity. O shielding provided stronger apoptotic effects trough caspase-3 activation compared to N shielding. Gene array technology revealed induction of signaling and communication proteins such as immunomodulatory interleukin 6 as well as antioxidative and proproliferative molecules (HMOX1, VEGFA, HBEGF, CSF2, and MAPK) in response to different plasma shielding gas compositions. Cell response was correlated to reactive species: oxygen-shielding plasma induces a cell response more efficiently despite an apparent decrease of hydrogen peroxide (HO), which was previously shown to be a major player in plasma-cell regulation, emphasizing the role of non-HO ROS like singlet oxygen. Our results suggest differential effects of ROS- and RNS-rich plasma, and may have a role in optimizing clinical plasma applications in chronic wounds.
冷物理等离子体一项特别有前景的医学应用是促进伤口愈合。这可能是通过调节炎症以及皮肤细胞信号传导和迁移来实现的。等离子体衍生的活性氧和氮物种(ROS/RNS)被认为是主要的生物活性等离子体成分。我们假设,在大气压氩等离子体射流(kINPen)中,将环境等离子体条件从纯氮气(N)调节为纯氧气(O)会改变ROS/RNS的类型和浓度,并有效调节人类皮肤细胞的行为。为了对此进行研究,我们在体外研究了HaCaT角质形成细胞的细胞代谢、活力、生长、基因表达特征和细胞因子分泌。流式细胞术显示对细胞毒性只有轻微影响。与氮气屏蔽相比,氧气屏蔽通过激活半胱天冬酶-3产生更强的凋亡效应。基因芯片技术揭示,响应不同的等离子体屏蔽气体成分,信号传导和通讯蛋白如免疫调节性白细胞介素6以及抗氧化和促增殖分子(血红素加氧酶1、血管内皮生长因子A、肝素结合表皮生长因子、集落刺激因子2和丝裂原活化蛋白激酶)被诱导。细胞反应与活性物质相关:尽管过氧化氢(H₂O₂)明显减少,但氧气屏蔽等离子体更有效地诱导细胞反应,此前已证明H₂O₂是等离子体-细胞调节中的主要参与者,这强调了单线态氧等非H₂O₂ ROS的作用。我们的结果表明富含ROS和RNS的等离子体具有不同的效应,可能在优化慢性伤口的临床等离子体应用中发挥作用。