Schmidt Anke, Singer Debora, Aden Henrike, von Woedtke Thomas, Bekeschus Sander
ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany.
Antioxidants (Basel). 2024 Jan 2;13(1):68. doi: 10.3390/antiox13010068.
Diabetes can disrupt physiological wound healing, caused by decreased levels or impaired activity of angiogenic factors. This can contribute to chronic inflammation, poor formation of new blood vessels, and delayed re-epithelialization. The present study describes the preclinical application of medical gas plasma to treat a dermal, full-thickness ear wound in streptozotocin (STZ)-induced diabetic mice. Gas plasma-mediated effects occurred in both sexes but with gender-specific differences. Hyperspectral imaging demonstrated gas plasma therapy changing microcirculatory parameters, particularly oxygen saturation levels during wound healing, presumably due to the gas plasma's tissue delivery of reactive species and other bioactive components. In addition, gas plasma treatment significantly affected cell adhesion by regulating focal adhesion kinase and vinculin, which is important in maintaining skin barrier function by regulating syndecan expression and increasing re-epithelialization. An anticipated stimulation of blood vessel formation was detected via transcriptional and translational increase of angiogenic factors in gas plasma-exposed wound tissue. Moreover, gas plasma treatment significantly affected inflammation by modulating systemic growth factors and cytokine levels. The presented findings may help explain the mode of action of successful clinical plasma therapy of wounds of diabetic patients.
Antioxidants (Basel). 2024-1-2
Zhonghua Shao Shang Za Zhi. 2018-12-20
J Mol Cell Cardiol. 2016-2
ACS Biomater Sci Eng. 2016-7-11
Theranostics. 2019-1-30
Vasc Biol. 2023-1-27
Immunity. 2022-1-11
Molecules. 2021-9-19
Redox Biol. 2021-10