Weikum Emily R, de Vera Ian Mitchelle S, Nwachukwu Jerome C, Hudson William H, Nettles Kendall W, Kojetin Douglas J, Ortlund Eric A
Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA.
Nucleic Acids Res. 2017 Aug 21;45(14):8596-8608. doi: 10.1093/nar/gkx509.
The glucocorticoid receptor (GR) is a ligand-regulated transcription factor that controls the expression of extensive gene networks, driving both up- and down-regulation. GR utilizes multiple DNA-binding-dependent and -independent mechanisms to achieve context-specific transcriptional outcomes. The DNA-binding-independent mechanism involves tethering of GR to the pro-inflammatory transcription factor activator protein-1 (AP-1) through protein-protein interactions. This mechanism has served as the predominant model of GR-mediated transrepression of inflammatory genes. However, ChIP-seq data have consistently shown GR to occupy AP-1 response elements (TREs), even in the absence of AP-1. Therefore, the current model is insufficient to explain GR action at these sites. Here, we show that GR regulates a subset of inflammatory genes in a DNA-binding-dependent manner. Using structural biology and biochemical approaches, we show that GR binds directly to TREs via sequence-specific contacts to a GR-binding sequence (GBS) half-site found embedded within the TRE motif. Furthermore, we show that GR-mediated transrepression observed at TRE sites to be DNA-binding-dependent. This represents a paradigm shift in the field, showing that GR uses multiple mechanisms to suppress inflammatory gene expression. This work further expands our understanding of this complex multifaceted transcription factor.
糖皮质激素受体(GR)是一种受配体调控的转录因子,可控制广泛基因网络的表达,驱动基因的上调和下调。GR利用多种依赖DNA结合和不依赖DNA结合的机制来实现特定背景下的转录结果。不依赖DNA结合的机制涉及通过蛋白质-蛋白质相互作用将GR与促炎转录因子激活蛋白-1(AP-1)拴系在一起。这种机制一直是GR介导的炎症基因反式抑制的主要模型。然而,染色质免疫沉淀测序(ChIP-seq)数据一直显示,即使在没有AP-1的情况下,GR也会占据AP-1反应元件(TRE)。因此,目前的模型不足以解释GR在这些位点的作用。在这里,我们表明GR以依赖DNA结合的方式调节一部分炎症基因。使用结构生物学和生化方法,我们表明GR通过与TRE基序中嵌入的GR结合序列(GBS)半位点的序列特异性接触直接结合到TRE。此外,我们表明在TRE位点观察到的GR介导的反式抑制是依赖DNA结合的。这代表了该领域的范式转变,表明GR使用多种机制来抑制炎症基因表达。这项工作进一步扩展了我们对这种复杂多面转录因子的理解。