Max Planck Institute for Molecular Genetics, Berlin, Germany.
Max Planck Institute for Molecular Genetics, Berlin, Germany
Life Sci Alliance. 2019 Mar 13;2(2). doi: 10.26508/lsa.201800283. Print 2019 Apr.
The glucocorticoid receptor (GR), a hormone-activated transcription factor, binds to a myriad of genomic binding sites yet seems to regulate a much smaller number of genes. Genome-wide analysis of GR binding and gene regulation has shown that the likelihood of GR-dependent regulation increases with decreased distance of its binding to the transcriptional start site of a gene. To test if we can adopt this knowledge to expand the repertoire of GR target genes, we used CRISPR/Cas-mediated homology-directed repair to add a single GR-binding site directly upstream of the transcriptional start site of each of four genes. To our surprise, we found that the addition of a single GR-binding site can be enough to convert a gene into a GR target. The gain of GR-dependent regulation was observed for two of four genes analyzed and coincided with acquired GR binding at the introduced binding site. However, the gene-specific gain of GR-dependent regulation could not be explained by obvious differences in chromatin accessibility between converted genes and their non-converted counterparts. Furthermore, by introducing GR-binding sequences with different nucleotide compositions, we show that activation can be facilitated by distinct sequences without obvious differences in activity between the GR-binding sequence variants we tested. The approach to use genome engineering to build genomic response elements facilitates the generation of cell lines with tailored repertoires of GR-responsive genes and a framework to test and refine our understanding of the -regulatory logic of gene regulation by testing if engineered response elements behave as predicted.
糖皮质激素受体(GR)是一种激素激活的转录因子,它可以与无数的基因组结合位点结合,但似乎只调节数量相对较少的基因。对 GR 结合和基因调控的全基因组分析表明,GR 依赖性调控的可能性随着其与基因转录起始位点之间距离的减小而增加。为了测试我们是否可以利用这一知识来扩大 GR 靶基因的范围,我们使用 CRISPR/Cas 介导的同源定向修复,在四个基因的转录起始位点的上游直接添加一个单一的 GR 结合位点。令我们惊讶的是,我们发现添加一个单一的 GR 结合位点足以将一个基因转化为 GR 靶基因。在分析的四个基因中,有两个基因表现出 GR 依赖性调控的增加,并且与引入的结合位点处的 GR 结合一致。然而,转换基因和非转换基因之间染色质可及性的明显差异并不能解释基因特异性的 GR 依赖性调控的增加。此外,通过引入具有不同核苷酸组成的 GR 结合序列,我们表明,通过引入具有不同核苷酸组成的 GR 结合序列,激活可以通过不同的序列来促进,而无需测试的 GR 结合序列变体之间在活性上有明显差异。使用基因组工程构建基因组反应元件的方法,便于生成具有定制的 GR 响应基因库的细胞系,并通过测试工程化的反应元件是否按预期表现来测试和完善我们对基因调控的调控逻辑的理解。