Tyler Anna L, Ji Bo, Gatti Daniel M, Munger Steven C, Churchill Gary A, Svenson Karen L, Carter Gregory W
The Jackson Laboratory, Bar Harbor, Maine 04609.
The Jackson Laboratory, Bar Harbor, Maine 04609
Genetics. 2017 Jun;206(2):621-639. doi: 10.1534/genetics.116.198051.
Genetic studies of multidimensional phenotypes can potentially link genetic variation, gene expression, and physiological data to create multi-scale models of complex traits. The challenge of reducing these data to specific hypotheses has become increasingly acute with the advent of genome-scale data resources. Multi-parent populations derived from model organisms provide a resource for developing methods to understand this complexity. In this study, we simultaneously modeled body composition, serum biomarkers, and liver transcript abundances from 474 Diversity Outbred mice. This population contained both sexes and two dietary cohorts. Transcript data were reduced to functional gene modules with weighted gene coexpression network analysis (WGCNA), which were used as summary phenotypes representing enriched biological processes. These module phenotypes were jointly analyzed with body composition and serum biomarkers in a combined analysis of pleiotropy and epistasis (CAPE), which inferred networks of epistatic interactions between quantitative trait loci that affect one or more traits. This network frequently mapped interactions between alleles of different ancestries, providing evidence of both genetic synergy and redundancy between haplotypes. Furthermore, a number of loci interacted with sex and diet to yield sex-specific genetic effects and alleles that potentially protect individuals from the effects of a high-fat diet. Although the epistatic interactions explained small amounts of trait variance, the combination of directional interactions, allelic specificity, and high genomic resolution provided context to generate hypotheses for the roles of specific genes in complex traits. Our approach moves beyond the cataloging of single loci to infer genetic networks that map genetic etiology by simultaneously modeling all phenotypes.
对多维表型的遗传学研究有可能将遗传变异、基因表达和生理数据联系起来,以创建复杂性状的多尺度模型。随着基因组规模数据资源的出现,将这些数据简化为特定假设的挑战变得日益严峻。源自模式生物的多亲本群体为开发理解这种复杂性的方法提供了一种资源。在本研究中,我们同时对474只多样性远交小鼠的身体组成、血清生物标志物和肝脏转录本丰度进行了建模。该群体包含两性和两个饮食队列。利用加权基因共表达网络分析(WGCNA)将转录本数据简化为功能基因模块,这些模块被用作代表富集生物学过程的汇总表型。在多效性和上位性联合分析(CAPE)中,将这些模块表型与身体组成和血清生物标志物进行联合分析,该分析推断了影响一个或多个性状的数量性状位点之间的上位性相互作用网络。该网络经常映射不同祖先等位基因之间的相互作用,为单倍型之间的遗传协同和冗余提供了证据。此外,一些基因座与性别和饮食相互作用,产生性别特异性遗传效应和可能保护个体免受高脂饮食影响的等位基因。尽管上位性相互作用解释的性状变异量较小,但定向相互作用、等位基因特异性和高基因组分辨率的结合为生成关于特定基因在复杂性状中作用的假设提供了背景。我们的方法超越了对单个基因座的编目,通过同时对所有表型进行建模来推断映射遗传病因的遗传网络。