Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.
Research Priority Area Yield, University of Amsterdam, Amsterdam, The Netherlands.
Behav Res Methods. 2018 Apr;50(2):834-852. doi: 10.3758/s13428-017-0909-3.
Eye-trackers are a popular tool for studying cognitive, emotional, and attentional processes in different populations (e.g., clinical and typically developing) and participants of all ages, ranging from infants to the elderly. This broad range of processes and populations implies that there are many inter- and intra-individual differences that need to be taken into account when analyzing eye-tracking data. Standard parsing algorithms supplied by the eye-tracker manufacturers are typically optimized for adults and do not account for these individual differences. This paper presents gazepath, an easy-to-use R-package that comes with a graphical user interface (GUI) implemented in Shiny (RStudio Inc 2015). The gazepath R-package combines solutions from the adult and infant literature to provide an eye-tracking parsing method that accounts for individual differences and differences in data quality. We illustrate the usefulness of gazepath with three examples of different data sets. The first example shows how gazepath performs on free-viewing data of infants and adults, compared to standard EyeLink parsing. We show that gazepath controls for spurious correlations between fixation durations and data quality in infant data. The second example shows that gazepath performs well in high-quality reading data of adults. The third and last example shows that gazepath can also be used on noisy infant data collected with a Tobii eye-tracker and low (60 Hz) sampling rate.
眼动追踪器是研究不同人群(例如临床和典型发展)和不同年龄段参与者的认知、情感和注意力过程的常用工具。这广泛的过程和人群意味着,在分析眼动追踪数据时,需要考虑许多个体间和个体内的差异。眼动追踪器制造商提供的标准解析算法通常针对成年人进行了优化,并未考虑这些个体差异。本文介绍了 gazepath,这是一个易于使用的 R 包,带有在 Shiny(RStudio Inc. 2015 年)中实现的图形用户界面 (GUI)。gazepath R 包结合了成人和婴儿文献中的解决方案,提供了一种考虑个体差异和数据质量差异的眼动追踪解析方法。我们用三个不同数据集的示例来说明 gazepath 的有用性。第一个示例展示了 gazepath 在婴儿和成人自由观看数据上的表现,与标准 EyeLink 解析相比。我们表明,gazepath 控制了婴儿数据中注视持续时间和数据质量之间的虚假相关性。第二个示例表明,gazepath 在成人高质量阅读数据上表现良好。第三个也是最后一个示例表明,gazepath 也可以用于使用 Tobii 眼动追踪器和低(60 Hz)采样率收集的嘈杂婴儿数据。