Suppr超能文献

在人类复杂疾病的遗传风险预测中利用功能注释。

Leveraging functional annotations in genetic risk prediction for human complex diseases.

作者信息

Hu Yiming, Lu Qiongshi, Powles Ryan, Yao Xinwei, Yang Can, Fang Fang, Xu Xinran, Zhao Hongyu

机构信息

Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States of America.

Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States of America.

出版信息

PLoS Comput Biol. 2017 Jun 8;13(6):e1005589. doi: 10.1371/journal.pcbi.1005589. eCollection 2017 Jun.

Abstract

Genetic risk prediction is an important goal in human genetics research and precision medicine. Accurate prediction models will have great impacts on both disease prevention and early treatment strategies. Despite the identification of thousands of disease-associated genetic variants through genome wide association studies (GWAS), genetic risk prediction accuracy remains moderate for most diseases, which is largely due to the challenges in both identifying all the functionally relevant variants and accurately estimating their effect sizes in the presence of linkage disequilibrium. In this paper, we introduce AnnoPred, a principled framework that leverages diverse types of genomic and epigenomic functional annotations in genetic risk prediction for complex diseases. AnnoPred is trained using GWAS summary statistics in a Bayesian framework in which we explicitly model various functional annotations and allow for linkage disequilibrium estimated from reference genotype data. Compared with state-of-the-art risk prediction methods, AnnoPred achieves consistently improved prediction accuracy in both extensive simulations and real data.

摘要

遗传风险预测是人类遗传学研究和精准医学的一个重要目标。准确的预测模型将对疾病预防和早期治疗策略产生重大影响。尽管通过全基因组关联研究(GWAS)已鉴定出数千种与疾病相关的遗传变异,但对于大多数疾病而言,遗传风险预测的准确性仍然适中,这在很大程度上是由于在识别所有功能相关变异以及在连锁不平衡存在的情况下准确估计其效应大小方面都存在挑战。在本文中,我们介绍了AnnoPred,这是一个有原则的框架,它在复杂疾病的遗传风险预测中利用了多种类型的基因组和表观基因组功能注释。AnnoPred在贝叶斯框架中使用GWAS汇总统计数据进行训练,在该框架中我们明确地对各种功能注释进行建模,并允许根据参考基因型数据估计连锁不平衡。与最先进的风险预测方法相比,AnnoPred在广泛的模拟和真实数据中均实现了持续提高的预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2d/5481142/568f42d194c9/pcbi.1005589.g001.jpg

相似文献

1
Leveraging functional annotations in genetic risk prediction for human complex diseases.
PLoS Comput Biol. 2017 Jun 8;13(6):e1005589. doi: 10.1371/journal.pcbi.1005589. eCollection 2017 Jun.
2
Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction.
PLoS Genet. 2017 Jun 9;13(6):e1006836. doi: 10.1371/journal.pgen.1006836. eCollection 2017 Jun.
3
Probabilistic fine-mapping of transcriptome-wide association studies.
Nat Genet. 2019 Apr;51(4):675-682. doi: 10.1038/s41588-019-0367-1. Epub 2019 Mar 29.
4
Joint Bayesian inference of risk variants and tissue-specific epigenomic enrichments across multiple complex human diseases.
Nucleic Acids Res. 2016 Oct 14;44(18):e144. doi: 10.1093/nar/gkw627. Epub 2016 Jul 12.
5
Non-parametric Polygenic Risk Prediction via Partitioned GWAS Summary Statistics.
Am J Hum Genet. 2020 Jul 2;107(1):46-59. doi: 10.1016/j.ajhg.2020.05.004. Epub 2020 May 28.
6
Modeling and testing for joint association using a genetic random field model.
Biometrics. 2014 Sep;70(3):471-9. doi: 10.1111/biom.12160. Epub 2014 Mar 13.
7
Functional linear models for association analysis of quantitative traits.
Genet Epidemiol. 2013 Nov;37(7):726-42. doi: 10.1002/gepi.21757.
9
Improved methods for multi-trait fine mapping of pleiotropic risk loci.
Bioinformatics. 2017 Jan 15;33(2):248-255. doi: 10.1093/bioinformatics/btw615. Epub 2016 Sep 22.
10
A general framework for functionally informed set-based analysis: Application to a large-scale colorectal cancer study.
PLoS Genet. 2020 Aug 24;16(8):e1008947. doi: 10.1371/journal.pgen.1008947. eCollection 2020 Aug.

引用本文的文献

1
Pathway-Specific Polygenic Scores for Predicting Clinical Lithium Treatment Response in Patients With Bipolar Disorder.
Biol Psychiatry Glob Open Sci. 2025 Jun 25;5(5):100558. doi: 10.1016/j.bpsgos.2025.100558. eCollection 2025 Sep.
4
The Role of Polygenic Risk Score in the General Population: Current Status and Future Prospects.
J Atheroscler Thromb. 2025 Sep 1;32(9):1079-1097. doi: 10.5551/jat.RV22039. Epub 2025 Jul 4.
5
Recent Statistical Innovations in Human Genetics.
Ann Hum Genet. 2025 Sep;89(5):241-254. doi: 10.1111/ahg.12606. Epub 2025 Jun 27.
6
Robust pleiotropy-decomposed polygenic scores identify distinct contributions to elevated coronary artery disease polygenic risk.
PLoS Comput Biol. 2025 Jun 26;21(6):e1013191. doi: 10.1371/journal.pcbi.1013191. eCollection 2025 Jun.
7
Improving polygenic prediction from whole-genome sequencing data by leveraging predicted epigenomic features.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2419202122. doi: 10.1073/pnas.2419202122. Epub 2025 Jun 12.
9
Incorporating multiple functional annotations to improve polygenic risk prediction accuracy.
Cell Genom. 2025 Jun 11;5(6):100850. doi: 10.1016/j.xgen.2025.100850. Epub 2025 Apr 15.

本文引用的文献

1
A UNIFIED FRAMEWORK FOR VARIANCE COMPONENT ESTIMATION WITH SUMMARY STATISTICS IN GENOME-WIDE ASSOCIATION STUDIES.
Ann Appl Stat. 2017 Dec;11(4):2027-2051. doi: 10.1214/17-AOAS1052. Epub 2017 Dec 28.
2
Joint Bayesian inference of risk variants and tissue-specific epigenomic enrichments across multiple complex human diseases.
Nucleic Acids Res. 2016 Oct 14;44(18):e144. doi: 10.1093/nar/gkw627. Epub 2016 Jul 12.
3
Developing and evaluating polygenic risk prediction models for stratified disease prevention.
Nat Rev Genet. 2016 Jul;17(7):392-406. doi: 10.1038/nrg.2016.27. Epub 2016 May 3.
5
GenoWAP: GWAS signal prioritization through integrated analysis of genomic functional annotation.
Bioinformatics. 2016 Feb 15;32(4):542-8. doi: 10.1093/bioinformatics/btv610. Epub 2015 Oct 25.
6
Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores.
Am J Hum Genet. 2015 Oct 1;97(4):576-92. doi: 10.1016/j.ajhg.2015.09.001.
7
Partitioning heritability by functional annotation using genome-wide association summary statistics.
Nat Genet. 2015 Nov;47(11):1228-35. doi: 10.1038/ng.3404. Epub 2015 Sep 28.
8
Risk Classification with an Adaptive Naive Bayes Kernel Machine Model.
J Am Stat Assoc. 2015 Apr 22;110(509):393-404. doi: 10.1080/01621459.2014.908778.
9
Leveraging Functional-Annotation Data in Trans-ethnic Fine-Mapping Studies.
Am J Hum Genet. 2015 Aug 6;97(2):260-71. doi: 10.1016/j.ajhg.2015.06.007. Epub 2015 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验