Zeng Wanwen, Guo Hanmin, Liu Qiao, Wong Wing Hung
Department of Statistics, Stanford University, Stanford, CA 94305.
Bio-X Program, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2419202122. doi: 10.1073/pnas.2419202122. Epub 2025 Jun 12.
Polygenic risk scores (PRS) are essential tools for estimating individual susceptibility to complex diseases by aggregating the effects of many genetic variants. With the advent of whole-genome sequencing (WGS), rare and de novo variants can now be detected at scale, presenting new opportunities to enhance PRS performance. Additionally, regulatory mechanisms that govern gene expression play a critical role in disease manifestation, suggesting further potential for improvement. However, most existing PRS methods are not well-equipped to incorporate nonlinear variant effects, rare variant contributions, or regulatory context. To address these limitations, we developed Epi-PRS, a novel framework that leverages large language models (LLMs) to impute cell-type-specific epigenomic signals from personal diploid genotypes. These imputed signals act as informative intermediates between genotype and phenotype, allowing for more accurate modeling of variant impact. Our simulation studies demonstrate that Epi-PRS improves predictive accuracy by incorporating nonlinear relationships, rare variant effects, and regulatory information across large genomic regions. When applied to real data from the UK Biobank, Epi-PRS significantly outperforms existing PRS approaches in predicting risk for both breast cancer and type 2 diabetes. These results underscore the advantages of integrating WGS data, epigenomic context, and advanced LLMs framework to enhance both the predictive power and interpretability of PRS. Overall, Epi-PRS represents a promising step toward more precise and biologically informed disease risk prediction, with broad implications for advancing personalized medicine and understanding complex genetic architectures.
多基因风险评分(PRS)是通过汇总多个基因变异的效应来估计个体对复杂疾病易感性的重要工具。随着全基因组测序(WGS)的出现,现在可以大规模检测罕见和新生变异,为提高PRS性能带来了新机遇。此外,调控基因表达的机制在疾病表现中起着关键作用,这表明还有进一步改进的潜力。然而,大多数现有的PRS方法在纳入非线性变异效应、罕见变异贡献或调控背景方面能力不足。为了解决这些局限性,我们开发了Epi-PRS,这是一个新颖的框架,利用大语言模型(LLM)从个人二倍体基因型中推断细胞类型特异性表观基因组信号。这些推断出的信号在基因型和表型之间充当信息丰富的中间物,从而能够更准确地模拟变异的影响。我们的模拟研究表明,Epi-PRS通过纳入非线性关系、罕见变异效应以及跨大型基因组区域的调控信息,提高了预测准确性。当应用于英国生物银行的真实数据时,Epi-PRS在预测乳腺癌和2型糖尿病风险方面显著优于现有的PRS方法。这些结果强调了整合WGS数据、表观基因组背景和先进的LLM框架以增强PRS的预测能力和可解释性的优势。总体而言,Epi-PRS朝着更精确和基于生物学信息的疾病风险预测迈出了有前景的一步,对推进个性化医疗和理解复杂的遗传结构具有广泛的意义。