Suppr超能文献

一种基于轻微面部表情辅助的异步伪迹增强脑电图控制范式。

An asynchronous artifact-enhanced electroencephalogram based control paradigm assisted by slight facial expression.

作者信息

Lu Zhufeng, Zhang Xiaodong, Li Hanzhe, Zhang Teng, Gu Linxia, Tao Qing

机构信息

School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China.

Shaanxi Key Laboratory of Intelligent Robot, Xi'an Jiaotong University, Xi'an, China.

出版信息

Front Neurosci. 2022 Aug 16;16:892794. doi: 10.3389/fnins.2022.892794. eCollection 2022.

Abstract

In this study, an asynchronous artifact-enhanced electroencephalogram (EEG)-based control paradigm assisted by slight-facial expressions (sFE-paradigm) was developed. The brain connectivity analysis was conducted to reveal the dynamic directional interactions among brain regions under sFE-paradigm. The component analysis was applied to estimate the dominant components of sFE-EEG and guide the signal processing. Enhanced by the artifact within the detected electroencephalogram (EEG), the sFE-paradigm focused on the mainstream defect as the insufficiency of real-time capability, asynchronous logic, and robustness. The core algorithm contained four steps, including "," " "," and " It provided the asynchronous function, decoded eight instructions from the latest 100 ms signal, and greatly reduced the frequent misoperation. In the offline assessment, the sFE-paradigm achieved 96.46% ± 1.07 accuracy for " and 92.68% ± 1.21 for , with the theoretical output timespan less than 200 ms. This sFE-paradigm was applied to two online manipulations for evaluating stability and agility. In "," the averaged intersection-over-union was 60.03 ± 11.53%. In "," the average water volume was 202.5 ± 7.0 ml. During online, the sFE-paradigm performed no significant difference ( = 0.6521 and = 0.7931) with commercial control methods (i.e., FlexPendant and Joystick), indicating a similar level of controllability and agility. This study demonstrated the capability of sFE-paradigm, enabling a novel solution to the non-invasive EEG-based control in real-world challenges.

摘要

在本研究中,开发了一种基于异步伪迹增强脑电图(EEG)并辅以轻微面部表情的控制范式(sFE范式)。进行脑连接性分析以揭示sFE范式下脑区之间的动态定向相互作用。应用成分分析来估计sFE-EEG的主要成分并指导信号处理。通过检测到的脑电图(EEG)中的伪迹增强,sFE范式关注实时能力、异步逻辑和鲁棒性不足等主流缺陷。核心算法包含四个步骤,包括“,”“,”和“ 它提供了异步功能,从最新的100毫秒信号中解码出八条指令,并大大减少了频繁的误操作。在离线评估中,sFE范式对于“ 的准确率达到96.46%±1.07,对于 的准确率为92.68%±1.21,理论输出时间跨度小于200毫秒。这种sFE范式被应用于两种在线操作以评估稳定性和敏捷性。在“ 中,平均交并比为60.03±11.53%。在“ 中,平均水量为202.5±7.0毫升。在在线过程中,sFE范式与商业控制方法(即FlexPendant和操纵杆)相比无显著差异( = 0.6521和 = 0.7931),表明可控性和敏捷性水平相似。本研究展示了sFE范式的能力,为现实世界挑战中基于非侵入性EEG的控制提供了一种新的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4e5/9424911/95543cc8ec72/fnins-16-892794-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验