Molecular Sciences Software Institute, Blacksburg, Virginia 24061, United States.
Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland.
J Chem Theory Comput. 2023 May 9;19(9):2502-2517. doi: 10.1021/acs.jctc.3c00183. Epub 2023 Apr 21.
Density functional calculations on atoms are often used for determining accurate initial guesses as well as generating various types of pseudopotential approximations and efficient atomic-orbital basis sets for polyatomic calculations. To reach the best accuracy for these purposes, the atomic calculations should employ the same density functional as the polyatomic calculation. Atomic density functional calculations are typically carried out employing spherically symmetric densities, corresponding to the use of fractional orbital occupations. We have described their implementation for density functional approximations (DFAs) belonging to the local density approximation (LDA) and generalized gradient approximation (GGA) levels of theory as well as Hartree-Fock (HF) and range-separated exact exchange [Lehtola, S. , , 012516]. In this work, we describe the extension to meta-GGA functionals using the generalized Kohn-Sham scheme, in which the energy is minimized with respect to the orbitals, which in turn are expanded in the finite element formalism with high-order numerical basis functions. Furnished with the new implementation, we continue our recent work on the numerical well-behavedness of recent meta-GGA functionals [Lehtola, S.; Marques, M. A. L. , , 174114]. We pursue complete basis set (CBS) limit energies for recent density functionals and find many to be ill-behaved for the Li and Na atoms. We report basis set truncation errors (BSTEs) of some commonly used Gaussian basis sets for these density functionals and find the BSTEs to be strongly functional dependent. We also discuss the importance of density thresholding in DFAs and find that all of the functionals studied in this work yield total energies converged to 0.1 when densities smaller than 10 are screened out.
原子的密度泛函计算通常用于确定准确的初始猜测,以及生成各种类型的赝势近似和高效的原子轨道基组,用于多原子计算。为了达到这些目的的最佳精度,原子计算应该使用与多原子计算相同的密度泛函。原子密度泛函计算通常采用球形对称密度,对应于分数轨道占据的使用。我们已经描述了它们在密度泛函近似(DFA)中的实现,这些近似属于局域密度近似(LDA)和广义梯度近似(GGA)理论水平,以及哈特ree-Fock(HF)和范围分离精确交换[Lehtola,S.,,012516]。在这项工作中,我们描述了使用广义 Kohn-Sham 方案扩展到 meta-GGA 泛函的方法,其中能量是相对于轨道最小化的,而轨道又在有限元形式中展开,使用高阶数值基函数。有了新的实现,我们继续我们最近关于最近的 meta-GGA 泛函的数值良好行为的工作[Lehtola,S.;Marques,M. A. L.,,174114]。我们追求最近密度泛函的完全基组(CBS)极限能量,发现许多对 Li 和 Na 原子表现不佳。我们报告了这些密度泛函常用高斯基组的基组截断误差(BSTE),发现 BSTE 强烈依赖于功能。我们还讨论了密度泛函中密度阈值的重要性,并发现这项工作中研究的所有功能在将密度小于 10 的部分屏蔽后,总能量都收敛到 0.1。