Cernatic Filip, Senjean Bruno, Robert Vincent, Fromager Emmanuel
Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000, Strasbourg, France.
ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
Top Curr Chem (Cham). 2021 Nov 26;380(1):4. doi: 10.1007/s41061-021-00359-1.
Recent progress in the field of (time-independent) ensemble density-functional theory (DFT) for excited states are reviewed. Both Gross-Oliveira-Kohn (GOK) and N-centered ensemble formalisms, which are mathematically very similar and allow for an in-principle-exact description of neutral and charged electronic excitations, respectively, are discussed. Key exact results, for example, the equivalence between the infamous derivative discontinuity problem and the description of weight dependencies in the ensemble exchange-correlation density functional, are highlighted. The variational evaluation of orbital-dependent ensemble Hartree-exchange (Hx) energies is discussed in detail. We show in passing that state-averaging individual exact Hx energies can lead to severe (although solvable) v-representability issues. Finally, we explore the possibility of using the concept of density-driven correlation, which has been introduced recently and does not exist in regular ground-state DFT, for improving state-of-the-art correlation density-functional approximations for ensembles. The present review reflects the efforts of a growing community to turn ensemble DFT into a rigorous and reliable low-cost computational method for excited states. We hope that, in the near future, this contribution will stimulate new formal and practical developments in the field.
本文综述了(与时间无关的)激发态系综密度泛函理论(DFT)领域的最新进展。文中讨论了格罗斯 - 奥利维拉 - 科恩(GOK)形式和N中心系综形式,这两种形式在数学上非常相似,分别允许对中性和带电电子激发进行原则上精确的描述。重点介绍了一些关键的精确结果,例如臭名昭著的导数不连续性问题与系综交换 - 关联密度泛函中权重依赖性描述之间的等价性。详细讨论了轨道依赖的系综哈特里 - 交换(Hx)能量的变分评估。顺便指出,对各个精确Hx能量进行状态平均可能会导致严重的(尽管可解决的)v - 可表示性问题。最后,我们探讨了利用最近引入的、在常规基态DFT中不存在的密度驱动关联概念来改进系综的最新关联密度泛函近似的可能性。本综述反映了一个不断壮大的群体为将系综DFT转变为一种用于激发态的严谨且可靠的低成本计算方法所做的努力。我们希望在不久的将来,这一贡献将推动该领域新的形式和实际发展。