Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
Neurotoxicology. 2018 Jan;64:240-255. doi: 10.1016/j.neuro.2017.06.002. Epub 2017 Jun 20.
Parkinson's disease (PD) is now recognized as a neurodegenerative condition caused by a complex interplay of genetic and environmental influences. Chronic manganese (Mn) exposure has been implicated in the development of PD. Since mitochondrial dysfunction is associated with PD pathology as well as Mn neurotoxicity, we investigated whether Mn exposure augments mitochondrial dysfunction and neurodegeneration in the nigrostriatal dopaminergic system using a newly available mitochondrially defective transgenic mouse model of PD, the MitoPark mouse. This unique PD model recapitulates key features of the disease including progressive neurobehavioral changes and neuronal degeneration. We exposed MitoPark mice to a low dose of Mn (10mg/kg, p.o.) daily for 4 weeks starting at age 8 wks and then determined the behavioral, neurochemical and histological changes. Mn exposure accelerated the rate of progression of motor deficits in MitoPark mice when compared to the untreated MitoPark group. Mn also worsened olfactory function in this model. Most importantly, Mn exposure intensified the depletion of striatal dopamine and nigral TH neuronal loss in MitoPark mice. The neurodegenerative changes were accompanied by enhanced oxidative damage in the striatum and substantia nigra (SN) of MitoPark mice treated with Mn. Furthermore, Mn-treated MitoPark mice had significantly more oligomeric protein and IBA-1-immunoreactive microglia cells, suggesting Mn augments neuroinflammatory processes in the nigrostriatal pathway. To further confirm the direct effect of Mn on impaired mitochondrial function, we also generated a mitochondrially defective dopaminergic cell model by knocking out the TFAM transcription factor by using a CRISPR-Cas9 gene-editing method. Seahorse mitochondrial bioenergetic analysis revealed that Mn decreases mitochondrial basal and ATP-linked respiration in the TFAM KO cells. Collectively, our results reveal that Mn can augment mitochondrial dysfunction to exacerbate nigrostriatal neurodegeneration and PD-related behavioral symptoms. Our study also demonstrates that the MitoPark mouse is an excellent model to study the gene-environment interactions associated with mitochondrial defects in the nigral dopaminergic system as well as to evaluate the contribution of potential environmental toxicant interactions in a slowly progressive model of Parkinsonism.
帕金森病(PD)现在被认为是一种神经退行性疾病,由遗传和环境因素的复杂相互作用引起。慢性锰(Mn)暴露与 PD 的发展有关。由于线粒体功能障碍与 PD 病理学以及 Mn 神经毒性有关,我们使用新获得的帕金森病线粒体缺陷转基因小鼠模型,即 MitoPark 小鼠,研究了 Mn 暴露是否会加剧黑质纹状体多巴胺能系统中的线粒体功能障碍和神经退行性变。这种独特的 PD 模型再现了该疾病的关键特征,包括进行性神经行为改变和神经元变性。我们从 8 周龄开始,每天用 10mg/kg 的 Mn(口服)处理 MitoPark 小鼠 4 周,然后确定行为、神经化学和组织学变化。与未处理的 MitoPark 组相比,Mn 暴露加速了 MitoPark 小鼠运动缺陷的进展速度。Mn 还恶化了该模型的嗅觉功能。最重要的是,Mn 暴露加剧了 MitoPark 小鼠纹状体多巴胺耗竭和黑质 TH 神经元丢失。神经退行性变化伴随着 Mn 处理的 MitoPark 小鼠纹状体和黑质(SN)氧化损伤的增强。此外,Mn 处理的 MitoPark 小鼠有更多的寡聚蛋白和 IBA-1 免疫反应性小胶质细胞,表明 Mn 增强了黑质纹状体通路中的神经炎症过程。为了进一步证实 Mn 对受损线粒体功能的直接影响,我们还通过使用 CRISPR-Cas9 基因编辑方法敲除 TFAM 转录因子,生成了线粒体缺陷的多巴胺能细胞模型。 Seahorse 线粒体生物能量分析显示,Mn 降低了 TFAM KO 细胞的线粒体基础和 ATP 连接呼吸。总之,我们的结果表明,Mn 可以加剧线粒体功能障碍,从而加剧黑质纹状体神经退行性变和与 PD 相关的行为症状。我们的研究还表明,MitoPark 小鼠是研究与黑质多巴胺能系统中线粒体缺陷相关的基因-环境相互作用以及评估潜在环境有毒物质相互作用在帕金森病缓慢进展模型中的贡献的理想模型。