Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
J Neurosci. 2022 Dec 7;42(49):9263-9277. doi: 10.1523/JNEUROSCI.0545-22.2022. Epub 2022 Oct 24.
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). In this study, we generated a transgenic model by crossing germline Parkin mice with PolgA mice, an established model of premature aging and mitochondrial stress. We hypothesized that loss of Parkin in PolgA mice would exacerbate mitochondrial dysfunction, leading to loss of dopamine neurons and nigral-striatal specific neurobehavioral motor dysfunction. We found that aged Parkin/PolgA male and female mice exhibited severe behavioral deficits, nonspecific to the nigral-striatal pathway, with neither dopaminergic neurodegeneration nor reductions in striatal dopamine. We saw no difference in expression levels of nuclear-encoded subunits of mitochondrial markers and mitochondrial Complex I and IV activities, although we did observe substantial reductions in mitochondrial-encoded COX41I, indicating mitochondrial dysfunction as a result of PolgA mtDNA mutations. Expression levels of mitophagy markers LC3I/LC3II remained unchanged between cohorts, suggesting no overt mitophagy defects. Expression levels of the parkin substrates, VDAC, NLRP3, and AIMP2 remained unchanged, suggesting no parkin dysfunction. In summary, we were unable to observe dopaminergic neurodegeneration with corresponding nigral-striatal neurobehavioral deficits, nor Parkin or mitochondrial dysfunction in Parkin/PolgA mice. These findings support a lack of synergism of Parkin loss on mitochondrial dysfunction in mouse models of mitochondrial deficits. Producing a mouse model of Parkinson's disease (PD) that is etiologically relevant, recapitulates clinical hallmarks, and exhibits reproducible results is crucial to understanding the underlying pathology and in developing disease-modifying therapies. Here, we show that Parkin/PolgA mice, a previously reported PD mouse model, fails to reproduce a Parkinsonian phenotype. We show that these mice do not display dopaminergic neurodegeneration nor nigral-striatal-dependent motor deficits. Furthermore, we report that Parkin loss does not synergize with mitochondrial dysfunction. Our results demonstrate that Parkin/PolgA mice are not a reliable model for PD and adds to a growing body of work demonstrating that Parkin loss does not synergize with mitochondrial dysfunction in mouse models of mitochondrial deficits.
帕金森病(PD)的特征是黑质致密部(SNpc)中的多巴胺能神经元进行性丧失。在这项研究中,我们通过将 Parkin 基因敲除的小鼠与 PolgA 小鼠(一种已建立的早老症和线粒体应激模型)杂交,生成了一种转基因模型。我们假设 PolgA 小鼠中 Parkin 的缺失会加剧线粒体功能障碍,导致多巴胺神经元丧失和黑质纹状体特定的神经运动功能障碍。我们发现,年老的 Parkin/PolgA 雄性和雌性小鼠表现出严重的行为缺陷,与黑质纹状体通路无关,既没有多巴胺能神经退行性变,也没有纹状体多巴胺减少。我们没有观察到核编码线粒体标志物亚单位和线粒体复合物 I 和 IV 活性的表达水平有差异,尽管我们确实观察到线粒体编码的 COX41I 大量减少,这表明由于 PolgA mtDNA 突变导致线粒体功能障碍。自噬标志物 LC3I/LC3II 的表达水平在两个队列之间没有变化,这表明没有明显的自噬缺陷。Parkin 底物 VDAC、NLRP3 和 AIMP2 的表达水平保持不变,这表明 Parkin 没有功能障碍。总之,我们无法观察到 Parkin/PolgA 小鼠的多巴胺能神经退行性变与相应的黑质纹状体神经运动缺陷,也无法观察到 Parkin 或线粒体功能障碍。这些发现支持 Parkin 缺失对线粒体功能障碍在具有线粒体缺陷的小鼠模型中没有协同作用的观点。生成一种与病因学相关、重现临床特征且具有可重复性结果的帕金森病(PD)小鼠模型对于理解潜在的病理学和开发疾病修饰疗法至关重要。在这里,我们表明,先前报道的 PD 小鼠模型 Parkin/PolgA 小鼠未能重现帕金森病表型。我们表明,这些小鼠不会出现多巴胺能神经元丧失或黑质纹状体依赖的运动缺陷。此外,我们报告说 Parkin 的缺失不会与线粒体功能障碍协同作用。我们的结果表明,Parkin/PolgA 小鼠不是 PD 的可靠模型,并增加了越来越多的工作,证明 Parkin 的缺失不会与线粒体功能障碍在具有线粒体缺陷的小鼠模型中协同作用。