Suppr超能文献

代谢网络分割:一种基于概率图形建模的方法,用于从非靶向代谢组学数据中识别代谢调控的位点和顺序。

Metabolic network segmentation: A probabilistic graphical modeling approach to identify the sites and sequential order of metabolic regulation from non-targeted metabolomics data.

作者信息

Kuehne Andreas, Mayr Urs, Sévin Daniel C, Claassen Manfred, Zamboni Nicola

机构信息

Institute of Molecular Systems Biology, ETH Zurich, Switzerland.

PhD Program Systems Biology, Life Science Zurich Graduate School, Zurich, Switzerland.

出版信息

PLoS Comput Biol. 2017 Jun 9;13(6):e1005577. doi: 10.1371/journal.pcbi.1005577. eCollection 2017 Jun.

Abstract

In recent years, the number of large-scale metabolomics studies on various cellular processes in different organisms has increased drastically. However, it remains a major challenge to perform a systematic identification of mechanistic regulatory events that mediate the observed changes in metabolite levels, due to complex interdependencies within metabolic networks. We present the metabolic network segmentation (MNS) algorithm, a probabilistic graphical modeling approach that enables genome-scale, automated prediction of regulated metabolic reactions from differential or serial metabolomics data. The algorithm sections the metabolic network into modules of metabolites with consistent changes. Metabolic reactions that connect different modules are the most likely sites of metabolic regulation. In contrast to most state-of-the-art methods, the MNS algorithm is independent of arbitrary pathway definitions, and its probabilistic nature facilitates assessments of noisy and incomplete measurements. With serial (i.e., time-resolved) data, the MNS algorithm also indicates the sequential order of metabolic regulation. We demonstrated the power and flexibility of the MNS algorithm with three, realistic case studies with bacterial and human cells. Thus, this approach enables the identification of mechanistic regulatory events from large-scale metabolomics data, and contributes to the understanding of metabolic processes and their interplay with cellular signaling and regulation processes.

摘要

近年来,针对不同生物体各种细胞过程的大规模代谢组学研究数量急剧增加。然而,由于代谢网络内部存在复杂的相互依存关系,要对介导代谢物水平变化的机制调控事件进行系统识别,仍然是一项重大挑战。我们提出了代谢网络分割(MNS)算法,这是一种概率图形建模方法,能够从差异或序列代谢组学数据中对基因组规模的受调控代谢反应进行自动化预测。该算法将代谢网络分割为代谢物变化一致的模块。连接不同模块的代谢反应最有可能是代谢调控的位点。与大多数最先进的方法不同,MNS算法独立于任意的途径定义,其概率性质有助于评估噪声和不完整的测量数据。对于序列(即时间分辨)数据,MNS算法还能指出代谢调控的顺序。我们通过对细菌和人类细胞进行的三个实际案例研究,展示了MNS算法的强大功能和灵活性。因此,这种方法能够从大规模代谢组学数据中识别机制调控事件,并有助于理解代谢过程及其与细胞信号传导和调控过程的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7176/5482507/5aa7883c016b/pcbi.1005577.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验