Eduati Federica, Mangravite Lara M, Wang Tao, Tang Hao, Bare J Christopher, Huang Ruili, Norman Thea, Kellen Mike, Menden Michael P, Yang Jichen, Zhan Xiaowei, Zhong Rui, Xiao Guanghua, Xia Menghang, Abdo Nour, Kosyk Oksana, Friend Stephen, Dearry Allen, Simeonov Anton, Tice Raymond R, Rusyn Ivan, Wright Fred A, Stolovitzky Gustavo, Xie Yang, Saez-Rodriguez Julio
European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK.
Sage Bionetworks, Seattle, Washington, USA.
Nat Biotechnol. 2015 Sep;33(9):933-40. doi: 10.1038/nbt.3299. Epub 2015 Aug 10.
The ability to computationally predict the effects of toxic compounds on humans could help address the deficiencies of current chemical safety testing. Here, we report the results from a community-based DREAM challenge to predict toxicities of environmental compounds with potential adverse health effects for human populations. We measured the cytotoxicity of 156 compounds in 884 lymphoblastoid cell lines for which genotype and transcriptional data are available as part of the Tox21 1000 Genomes Project. The challenge participants developed algorithms to predict interindividual variability of toxic response from genomic profiles and population-level cytotoxicity data from structural attributes of the compounds. 179 submitted predictions were evaluated against an experimental data set to which participants were blinded. Individual cytotoxicity predictions were better than random, with modest correlations (Pearson's r < 0.28), consistent with complex trait genomic prediction. In contrast, predictions of population-level response to different compounds were higher (r < 0.66). The results highlight the possibility of predicting health risks associated with unknown compounds, although risk estimation accuracy remains suboptimal.
通过计算预测有毒化合物对人类的影响,有助于弥补当前化学安全测试的不足。在此,我们报告了一项基于社区的DREAM挑战的结果,该挑战旨在预测对人类群体可能产生不良健康影响的环境化合物的毒性。作为Tox21千人基因组计划的一部分,我们测量了156种化合物在884个淋巴母细胞系中的细胞毒性,这些细胞系的基因型和转录数据是可用的。挑战参与者开发了算法,以根据基因组图谱和化合物结构属性的群体水平细胞毒性数据预测毒性反应的个体间变异性。针对参与者不知情的实验数据集,对179个提交的预测进行了评估。个体细胞毒性预测优于随机预测,相关性适中(Pearson's r < 0.28),这与复杂性状基因组预测一致。相比之下,对不同化合物的群体水平反应预测更高(r < 0.66)。结果突出了预测与未知化合物相关的健康风险的可能性,尽管风险估计准确性仍未达到最佳。