Biggs Matthew B, Papin Jason A
Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America.
PLoS Comput Biol. 2017 Mar 6;13(3):e1005413. doi: 10.1371/journal.pcbi.1005413. eCollection 2017 Mar.
Genome-scale metabolic network reconstructions (GENREs) are repositories of knowledge about the metabolic processes that occur in an organism. GENREs have been used to discover and interpret metabolic functions, and to engineer novel network structures. A major barrier preventing more widespread use of GENREs, particularly to study non-model organisms, is the extensive time required to produce a high-quality GENRE. Many automated approaches have been developed which reduce this time requirement, but automatically-reconstructed draft GENREs still require curation before useful predictions can be made. We present a novel approach to the analysis of GENREs which improves the predictive capabilities of draft GENREs by representing many alternative network structures, all equally consistent with available data, and generating predictions from this ensemble. This ensemble approach is compatible with many reconstruction methods. We refer to this new approach as Ensemble Flux Balance Analysis (EnsembleFBA). We validate EnsembleFBA by predicting growth and gene essentiality in the model organism Pseudomonas aeruginosa UCBPP-PA14. We demonstrate how EnsembleFBA can be included in a systems biology workflow by predicting essential genes in six Streptococcus species and mapping the essential genes to small molecule ligands from DrugBank. We found that some metabolic subsystems contributed disproportionately to the set of predicted essential reactions in a way that was unique to each Streptococcus species, leading to species-specific outcomes from small molecule interactions. Through our analyses of P. aeruginosa and six Streptococci, we show that ensembles increase the quality of predictions without drastically increasing reconstruction time, thus making GENRE approaches more practical for applications which require predictions for many non-model organisms. All of our functions and accompanying example code are available in an open online repository.
基因组规模代谢网络重建(GENREs)是关于生物体中发生的代谢过程的知识宝库。GENREs已被用于发现和解释代谢功能,以及构建新的网络结构。阻碍GENREs更广泛应用,特别是用于研究非模式生物的一个主要障碍是生成高质量GENRE所需的大量时间。已经开发了许多自动化方法来减少这一时间要求,但自动重建的GENRE草图在进行有用的预测之前仍需要人工整理。我们提出了一种分析GENREs的新方法,通过表示许多同样与现有数据一致的替代网络结构,并从这个集合中生成预测,从而提高GENRE草图的预测能力。这种集合方法与许多重建方法兼容。我们将这种新方法称为集合通量平衡分析(EnsembleFBA)。我们通过预测模式生物铜绿假单胞菌UCBPP-PA14中的生长和基因必需性来验证EnsembleFBA。我们展示了如何通过预测六种链球菌物种中的必需基因并将这些必需基因映射到DrugBank中的小分子配体,将EnsembleFBA纳入系统生物学工作流程。我们发现,一些代谢子系统对预测的必需反应集的贡献不成比例,且每种链球菌物种都有其独特的方式,导致小分子相互作用产生物种特异性结果。通过我们对铜绿假单胞菌和六种链球菌的分析,我们表明集合提高了预测质量,而不会大幅增加重建时间,从而使GENRE方法对于需要对许多非模式生物进行预测的应用更具实用性。我们所有的功能及配套示例代码都可在一个开放的在线存储库中获取。