Meyer Christophe, Felblinger Jacques, Vuissoz Pierre-André, Bonnemains Laurent
U947, INSERM, Nancy, France.
IADI, University of Loraine, Nancy, France.
PLoS One. 2017 Jun 9;12(6):e0179011. doi: 10.1371/journal.pone.0179011. eCollection 2017.
Prediction of End-Systole time is of utmost importance for cardiac MRI to correctly associate acquired k-space lines during reconstruction of cine acquisitions. This prediction is usually based on the patient's heart rate using Weissler's formula, which was calibrated by linear regression within a population and cannot account for individual variability.
We propose an automatic method to build a personalized model that better predicts end-systole.
A phase contrast sequence was modified to acquire only central k-space line with 6.6ms temporal resolution, in a slice passing through the aorta during 128 heartbeats in 35 subjects. Segmentation of aorta and detection of end of systolic ejection was automatic. Duration of electromechanical systole duration as function of heart rate was determined for each subject separately.
In comparison with the global models, the adapted cardiac model predicted significantly better both echocardiographic end-systolic reference (bias = 0ms vs 17ms, p<0.001) and MRI measurements (bias = 6.8ms vs 17ms). Favorable impact was shown on the cine reconstruction of the 5 subjects with the higher cardiac variability (p = 0.02).
Personalization of cardiac model to the subject is feasible in MRI and reduces the error of prediction of systole.
对于心脏磁共振成像(MRI)而言,预测收缩末期时间对于在电影采集重建过程中正确关联采集到的k空间线至关重要。这种预测通常基于使用魏斯勒公式的患者心率,该公式是在人群中通过线性回归校准的,无法考虑个体差异。
我们提出一种自动方法来构建一个能更好预测收缩末期的个性化模型。
对相位对比序列进行修改以仅采集中心k空间线,时间分辨率为6.6毫秒,在35名受试者的128次心跳期间,在穿过主动脉的切片中进行采集。自动进行主动脉分割和收缩期射血末期检测。分别为每个受试者确定机电收缩期持续时间与心率的函数关系。
与全局模型相比,适应性心脏模型在预测超声心动图收缩末期参考值(偏差 = 0毫秒对17毫秒,p<0.001)和MRI测量值(偏差 = 6.8毫秒对17毫秒)方面均有显著更好的表现。对心脏变异性较高的5名受试者的电影重建显示出有利影响(p = 0.02)。
在MRI中使心脏模型针对个体进行个性化是可行的,并可减少收缩期预测误差。