Suppr超能文献

非触发式 MRI 主动脉脉搏波速度定量分析。

Nontriggered MRI quantification of aortic pulse-wave velocity.

机构信息

Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA.

出版信息

Magn Reson Med. 2011 Mar;65(3):750-5. doi: 10.1002/mrm.22651. Epub 2010 Sep 29.

Abstract

Pulse-wave velocity is an index of arterial stiffness, which is a strong indicator of cardiovascular risk. We present a high-speed technique that generates time-resolved complex difference signal intensity simultaneously in the ascending and descending aorta from velocity-encoded projections without gating, allowing quantification of pulse-wave velocity. The velocity-time curve was approximated with a time-resolved complex difference signal intensity to estimate the propagation time of the pulse wave in the aortic arch. The path length of the pulse wave is measured from an oblique sagittal image in a plane encompassing thoracic ascending and descending aorta, and pulse-wave velocity is computed from the ratio between the path length and pulse-wave propagation time. The method was implemented at 1.5 T and 3 T, and pulse-wave velocity was quantified in healthy subjects (ages 20-70 years, N=23) without symptoms or prior history of cardiovascular events. In addition, the method was compared against retrospectively EKG-gated PC-MRI. The overall results were found to be in good agreement with literature data showing age-related increase in aortic stiffness. The RMS differences between the projection and gated PC-MRI methods were less than 4%. Key benefits of the proposed method are simplicity in both data acquisition and processing requiring only computation of the complex difference between the velocity-encoded projections rather than absolute velocity.

摘要

脉搏波速度是动脉僵硬度的一个指标,是心血管风险的一个强有力的指标。我们提出了一种高速技术,它可以在没有门控的情况下从速度编码投影中同时生成升主动脉和降主动脉的时分辨差分信号强度,从而定量脉搏波速度。通过时分辨差分信号强度来近似速度时间曲线,以估计脉冲波在主动脉弓中的传播时间。脉冲波的路径长度是从包含胸升主动脉和降主动脉的斜矢状图像的平面中测量的,脉搏波速度是通过路径长度与脉搏波传播时间的比值计算得出的。该方法在 1.5T 和 3T 下实现,并在无心血管症状或既往病史的健康受试者(年龄 20-70 岁,N=23)中定量了脉搏波速度。此外,该方法与回顾性 ECG 门控 PC-MRI 进行了比较。总体结果与文献数据一致,表明主动脉僵硬度随年龄增长而增加。投影和门控 PC-MRI 方法之间的 RMS 差异小于 4%。该方法的主要优点是数据采集和处理简单,只需要计算速度编码投影之间的复差分,而不需要绝对速度。

相似文献

1
Nontriggered MRI quantification of aortic pulse-wave velocity.
Magn Reson Med. 2011 Mar;65(3):750-5. doi: 10.1002/mrm.22651. Epub 2010 Sep 29.
2
Quantification of aortic pulse wave velocity from a population based cohort: a fully automatic method.
J Cardiovasc Magn Reson. 2019 May 13;21(1):27. doi: 10.1186/s12968-019-0530-y.
4
Aortic length measurements for pulse wave velocity calculation: manual 2D vs automated 3D centreline extraction.
J Cardiovasc Magn Reson. 2017 Mar 8;19(1):32. doi: 10.1186/s12968-017-0341-y.
6
Robust segmentation methods with an application to aortic pulse wave velocity calculation.
Comput Med Imaging Graph. 2014 Apr;38(3):179-89. doi: 10.1016/j.compmedimag.2013.12.001. Epub 2013 Dec 21.
9
Accuracy of arterial pulse-wave velocity measurement using MR.
J Magn Reson Imaging. 1998 Jul-Aug;8(4):878-88. doi: 10.1002/jmri.1880080418.

引用本文的文献

2
New Insights From MRI and Cell Biology Into the Acute Vascular-Metabolic Implications of Electronic Cigarette Vaping.
Front Physiol. 2020 May 21;11:492. doi: 10.3389/fphys.2020.00492. eCollection 2020.
3
Acute Effects of Electronic Cigarette Aerosol Inhalation on Vascular Function Detected at Quantitative MRI.
Radiology. 2019 Oct;293(1):97-106. doi: 10.1148/radiol.2019190562. Epub 2019 Aug 20.
4
Cerebral Autoregulation Evidenced by Synchronized Low Frequency Oscillations in Blood Pressure and Resting-State fMRI.
Front Neurosci. 2019 May 7;13:433. doi: 10.3389/fnins.2019.00433. eCollection 2019.
5
Detecting Regional Stiffness Changes in Aortic Aneurysmal Geometries Using Pressure-Normalized Strain.
Ultrasound Med Biol. 2017 Oct;43(10):2372-2394. doi: 10.1016/j.ultrasmedbio.2017.06.002. Epub 2017 Jul 17.
6
Accuracy of subject-specific prediction of end-systolic time in MRI across a range of RR intervals.
PLoS One. 2017 Jun 9;12(6):e0179011. doi: 10.1371/journal.pone.0179011. eCollection 2017.
7
Real-time aortic pulse wave velocity measurement during exercise stress testing.
J Cardiovasc Magn Reson. 2015 Oct 5;17:86. doi: 10.1186/s12968-015-0191-4.
8
Assessing intracranial vascular compliance using dynamic arterial spin labeling.
Neuroimage. 2016 Jan 1;124(Pt A):433-441. doi: 10.1016/j.neuroimage.2015.09.008. Epub 2015 Sep 10.

本文引用的文献

1
Estimation of global aortic pulse wave velocity by flow-sensitive 4D MRI.
Magn Reson Med. 2010 Jun;63(6):1575-82. doi: 10.1002/mrm.22353.
2
Validation and reproducibility of aortic pulse wave velocity as assessed with velocity-encoded MRI.
J Magn Reson Imaging. 2009 Sep;30(3):521-6. doi: 10.1002/jmri.21886.
3
Interrelationships among noninvasive measures of postischemic macro- and microvascular reactivity.
J Appl Physiol (1985). 2008 Aug;105(2):427-32. doi: 10.1152/japplphysiol.90431.2008. Epub 2008 May 15.
5
6
Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population.
Circulation. 2006 Feb 7;113(5):664-70. doi: 10.1161/CIRCULATIONAHA.105.579342.
8
Rapid measurement of pulse wave velocity via multisite flow displacement.
Magn Reson Med. 2004 Dec;52(6):1351-7. doi: 10.1002/mrm.20298.
9
Arterial stiffness and kidney function.
Hypertension. 2004 Feb;43(2):163-8. doi: 10.1161/01.HYP.0000114571.75762.b0. Epub 2004 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验