Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST), Okayama 700-8530, Japan; Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
Department of Applied Chemistry and Biotechnology, Okayama University of Science, Okayama, 700-0005, Japan.
Water Res. 2017 Oct 1;122:139-147. doi: 10.1016/j.watres.2017.05.003. Epub 2017 May 4.
Leptothrix species, aquatic Fe-oxidizing bacteria, excrete nano-scaled exopolymer fibrils. Once excreted, the fibrils weave together and coalesce to form extracellular, microtubular, immature sheaths encasing catenulate cells of Leptothrix. The immature sheaths, composed of aggregated nanofibrils with a homogeneous-looking matrix, attract and bind aqueous-phase inorganics, especially Fe, P, and Si, to form seemingly solid, mature sheaths of a hybrid organic-inorganic nature. To verify our assumption that the organic skeleton of the sheaths might sorb a broad range of other metallic and nonmetallic elements, we examined the sorption potential of chemically and enzymatically prepared protein-free organic sheath remnants for 47 available elements. The sheath remnants were found by XRF to sorb each of the 47 elements, although their sorption degree varied among the elements: >35% atomic percentages for Ti, Y, Zr, Ru, Rh, Ag, and Au. Electron microscopy, energy dispersive x-ray spectroscopy, electron and x-ray diffractions, and Fourier transform infrared spectroscopy analyses of sheath remnants that had sorbed Ag, Cu, and Pt revealed that (i) the sheath remnants comprised a 5-10 nm thick aggregation of fibrils, (ii) the test elements were distributed almost homogeneously throughout the fibrillar aggregate, (iii) the nanofibril matrix sorbing the elements was nearly amorphous, and (iv) these elements plausibly were bound to the matrix by ionic binding, especially via OH. The present results show that the constitutive protein-free exopolymer nanofibrils of the sheaths can contribute to creating novel filtering materials for recovering and recycling useful and/or hazardous elements from the environment.
微丝菌属(Leptothrix)物种是水生铁氧化细菌,会分泌纳米级的外聚物原纤维。原纤维一旦分泌出来,就会交织并融合在一起,形成包裹着连环细胞的微管状、不成熟的鞘。不成熟的鞘由聚集的纳米纤维和看起来均匀的基质组成,吸引并结合水相无机物,特别是铁、磷和硅,形成似乎是固态的、具有混合有机-无机性质的成熟鞘。为了验证我们的假设,即鞘的有机骨架可能会吸附广泛的其他金属和非金属元素,我们研究了化学和酶法制备的无蛋白有机鞘残余物对 47 种可用元素的吸附潜力。通过 XRF 分析发现,鞘残余物吸附了这 47 种元素中的每一种,尽管它们的吸附程度因元素而异:Ti、Y、Zr、Ru、Rh、Ag 和 Au 的原子百分比>35%。对吸附了 Ag、Cu 和 Pt 的鞘残余物的电子显微镜、能量色散 X 射线光谱、电子和 X 射线衍射以及傅里叶变换红外光谱分析表明:(i) 鞘残余物由 5-10nm 厚的纤维聚集组成;(ii) 测试元素几乎均匀地分布在纤维聚集物中;(iii) 吸附元素的纳米纤维基质几乎是非晶态的;(iv) 这些元素很可能通过离子键,特别是通过 OH 键,与基质结合。目前的结果表明,鞘的无蛋白外聚物纳米纤维可以为创造新型过滤材料做出贡献,以从环境中回收和再利用有用和/或有害元素。