Faculty of Science and Engineering, Kyushu Sangyo University, Fukuoka, 813-8503, Japan.
Department of Physics, Kumamoto University, Kumamoto, 860-8555, Japan.
Sci Rep. 2019 Feb 12;9(1):1828. doi: 10.1038/s41598-019-38540-8.
Certain bacteria produce iron oxide material assembled with nanoparticles (NPs) that are doped with silicon (Fe:Si ~ 3:1) in ambient environment. Such biogenous iron oxides (BIOX) proved to be an excellent electrode material for lithium-ion batteries, but underlying atomistic mechanisms remain elusive. Here, quantum molecular dynamics simulations, combined with biomimetic synthesis and characterization, show rapid charging and discharging of NP within 100 fs, with associated surface lithiation and delithiation, respectively. The rapid electric response of NP is due to the large fraction of surface atoms. Furthermore, this study reveals an essential role of Si-doping, which reduces the strength of Li-O bonds, thereby achieving more gentle and reversible lithiation culminating in enhanced cyclability of batteries. Combined with recent developments in bio-doping technologies, such fundamental understanding may lead to energy-efficient and environment-friendly synthesis of a wide variety of doped BIOX materials with customized properties.
某些细菌在环境中产生纳米颗粒 (NPs) 组装的氧化铁材料,这些 NPs 掺杂有硅(Fe:Si~3:1)。这种生物成因氧化铁 (BIOX) 已被证明是锂离子电池的优秀电极材料,但潜在的原子机制仍难以捉摸。在这里,量子分子动力学模拟结合仿生合成和表征,表明 NP 在 100fs 内快速充电和放电,分别伴随着表面的锂化和去锂化。NP 的快速电响应归因于表面原子的大分数。此外,本研究揭示了 Si 掺杂的重要作用,它降低了 Li-O 键的强度,从而实现了更温和且可逆的锂化,最终提高了电池的循环稳定性。结合最近在生物掺杂技术方面的发展,这种基本理解可能会导致高效节能和环保的合成方法,用于制备具有定制性能的各种掺杂 BIOX 材料。