1 International Collaboration on Repair Discoveries, University of British Columbia , Vancouver, British Columbia, Canada .
2 MD/PhD Training Program, University of British Columbia , Vancouver, British Columbia, Canada .
J Neurotrauma. 2018 Feb 1;35(3):424-434. doi: 10.1089/neu.2017.4984. Epub 2017 Oct 13.
Individuals with spinal cord injury (SCI) have been shown to exhibit systolic, and to a lesser extent, diastolic cardiac dysfunction. However, previous reports of cardiac dysfunction in this population are confounded by the changing loading conditions after SCI and as such, whether cardiac dysfunction per se is present is still unknown. Therefore, our aim was to establish if load-independent cardiac dysfunction is present after SCI, to understand the functional cardiac response to SCI, and to explore the changes within the cellular milieu of the myocardium. Here, we applied in vivo echocardiography and left-ventricular (LV) pressure-volume catheterization with dobutamine infusions to our Wistar rodent model of cardiac dysfunction 5 weeks following high (T2) thoracic contusion SCI, while also examining the morphological and transcriptional alterations of cardiomyocytes. We found that SCI significantly impairs systolic function independent of loading conditions (end-systolic elastance in control: 1.35 ± 0.15; SCI: 0.65 ± 0.19 mm Hg/μL). The reduction in contractile indices is accompanied by a reduction in width and length of cardiomyocytes as well as alterations in the LV extracellular matrix. Importantly, we demonstrate that the reduction in the rate (dP/dt) of LV pressure rise can be offset with beta-adrenergic stimulation, thereby experimentally implicating the loss of descending sympatho-excitatory control of the heart as a principle cause of LV dysfunction in SCI. Our data provide evidence that SCI induces systolic cardiac dysfunction independent of loading conditions and concomitant cardiomyocyte atrophy that may be underpinned by changes in the genes regulating the cardiac extracellular matrix.
个体的脊髓损伤 (SCI) 已被证明存在收缩期,在较小程度上也存在舒张期心脏功能障碍。然而,该人群中心脏功能障碍的先前报告受到 SCI 后负荷条件变化的影响,因此,是否存在心脏功能障碍本身仍然未知。因此,我们的目的是确定 SCI 后是否存在独立于负荷的心脏功能障碍,了解 SCI 对心脏功能的反应,并探索心肌细胞内环境的变化。在这里,我们应用体内超声心动图和左心室 (LV) 压力 - 容积导管术,并在 SCI 后 5 周对我们的心脏功能障碍 Wistar 啮齿动物模型进行多巴酚丁胺输注,同时还检查了心肌细胞的形态和转录变化。我们发现,SCI 显著损害了收缩功能,而与负荷条件无关(对照组的收缩末期弹性:1.35±0.15;SCI:0.65±0.19mmHg/μL)。收缩指数的降低伴随着心肌细胞宽度和长度的减少以及 LV 细胞外基质的改变。重要的是,我们证明 LV 压力上升率 (dP/dt) 的降低可以通过β-肾上腺素能刺激来抵消,从而从实验上表明,心脏下行交感神经兴奋控制的丧失是 SCI 中 LV 功能障碍的主要原因。我们的数据提供了证据,表明 SCI 诱导了独立于负荷条件的收缩期心脏功能障碍,同时伴有心肌细胞萎缩,这可能是调节心脏细胞外基质的基因变化的结果。