Virgilio Stela, Cupertino Fernanda Barbosa, Ambrosio Daniela Luz, Bertolini Maria Célia
Universidade Estadual Paulista (UNESP), Instituto de Química, Departamento de Bioquímica e Tecnologia Química, Araraquara, SP, 14800-060, Brazil.
BMC Genomics. 2017 Jun 9;18(1):457. doi: 10.1186/s12864-017-3832-1.
Glycogen and trehalose are storage carbohydrates and their levels in microorganisms vary according to environmental conditions. In Neurospora crassa, alkaline pH stress highly influences glycogen levels, and in Saccharomyces cerevisiae, the response to pH stress also involves the calcineurin signaling pathway mediated by the Crz1 transcription factor. Recently, in yeast, pH stress response genes were identified as targets of Crz1 including genes involved in glycogen and trehalose metabolism. In this work, we present evidence that in N. crassa the glycogen and trehalose metabolism is modulated by alkaline pH and calcium stresses.
We demonstrated that the pH signaling pathway in N. crassa controls the accumulation of the reserve carbohydrates glycogen and trehalose via the PAC-3 transcription factor, which is the central regulator of the signaling pathway. The protein binds to the promoters of most of the genes encoding enzymes of glycogen and trehalose metabolism and regulates their expression. We also demonstrated that the reserve carbohydrate levels and gene expression are both modulated under calcium stress and that the response to calcium stress may involve the concerted action of PAC-3. Calcium activates growth of the Δpac-3 strain and influences its glycogen and trehalose accumulation. In addition, calcium stress differently regulates glycogen and trehalose metabolism in the mutant strain compared to the wild-type strain. While glycogen levels are decreased in both strains, the trehalose levels are significantly increased in the wild-type strain and not affected by calcium in the mutant strain when compared to mycelium not exposed to calcium.
We previously reported the role of PAC-3 as a transcription factor involved in glycogen metabolism regulation by controlling the expression of the gsn gene, which encodes an enzyme of glycogen synthesis. In this work, we extended the investigation by studying in greater detail the effects of pH on the metabolism of the reserve carbohydrate glycogen and trehalose. We also demonstrated that calcium stress affects the reserve carbohydrate levels and the response to calcium stress may require PAC-3. Considering that the reserve carbohydrate metabolism may be subjected to different signaling pathways control, our data contribute to the understanding of the N. crassa responses under pH and calcium stresses.
糖原和海藻糖是储存性碳水化合物,它们在微生物中的水平会根据环境条件而变化。在粗糙脉孢菌中,碱性pH胁迫对糖原水平有很大影响,而在酿酒酵母中,对pH胁迫的反应还涉及由Crz1转录因子介导的钙调神经磷酸酶信号通路。最近,在酵母中,pH胁迫反应基因被确定为Crz1的靶标,包括参与糖原和海藻糖代谢的基因。在这项研究中,我们提供证据表明,在粗糙脉孢菌中,糖原和海藻糖代谢受碱性pH和钙胁迫的调节。
我们证明,粗糙脉孢菌中的pH信号通路通过PAC-3转录因子控制储备碳水化合物糖原和海藻糖的积累,PAC-3转录因子是该信号通路的核心调节因子。该蛋白与大多数编码糖原和海藻糖代谢酶的基因的启动子结合并调节它们的表达。我们还证明,在钙胁迫下储备碳水化合物水平和基因表达均受到调节,并且对钙胁迫的反应可能涉及PAC-3的协同作用。钙激活Δpac-3菌株的生长并影响其糖原和海藻糖的积累。此外,与野生型菌株相比,钙胁迫对突变菌株中糖原和海藻糖代谢的调节方式不同。与未暴露于钙的菌丝体相比,两种菌株中的糖原水平均降低,而野生型菌株中的海藻糖水平显著增加,而突变菌株中的海藻糖水平不受钙的影响。
我们之前报道了PAC-3作为转录因子通过控制编码糖原合成酶的gsn基因的表达参与糖原代谢调节的作用。在这项研究中,我们通过更详细地研究pH对储备碳水化合物糖原和海藻糖代谢的影响扩展了研究。我们还证明钙胁迫会影响储备碳水化合物水平,并且对钙胁迫的反应可能需要PAC-3。考虑到储备碳水化合物代谢可能受不同信号通路的控制,我们的数据有助于理解粗糙脉孢菌在pH和钙胁迫下的反应。