Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, Araraquara, São Paulo, Brazil.
PLoS One. 2012;7(8):e44258. doi: 10.1371/journal.pone.0044258. Epub 2012 Aug 31.
Glycogen is a polysaccharide widely distributed in microorganisms and animal cells and its metabolism is under intricate regulation. Its accumulation in a specific situation results from the balance between glycogen synthase and glycogen phosphorylase activities that control synthesis and degradation, respectively. These enzymes are highly regulated at transcriptional and post-translational levels. The existence of a DNA motif for the Aspergillus nidulans pH responsive transcription factor PacC in the promoter of the gene encoding glycogen synthase (gsn) in Neurospora crassa prompted us to investigate whether this transcription factor regulates glycogen accumulation. Transcription factors such as PacC in A. nidulans and Rim101p in Saccharomyces cerevisiae play a role in the signaling pathway that mediates adaptation to ambient pH by inducing the expression of alkaline genes and repressing acidic genes. We showed here that at pH 7.8 pacC was over-expressed and gsn was down-regulated in wild-type N. crassa coinciding with low glycogen accumulation. In the pacC(KO) strain the glycogen levels and gsn expression at alkaline pH were, respectively, similar to and higher than the wild-type strain at normal pH (5.8). These results characterize gsn as an acidic gene and suggest a regulatory role for PACC in gsn expression. The truncated recombinant protein, containing the DNA-binding domain specifically bound to a gsn DNA fragment containing the PacC motif. DNA-protein complexes were observed with extracts from cells grown at normal and alkaline pH and confirmed by ChIP-PCR analysis. The PACC present in these extracts showed equal molecular mass, indicating that the protein is already processed at normal pH, in contrast to A. nidulans. Together, these results show that the pH signaling pathway controls glycogen accumulation by regulating gsn expression and suggest the existence of a different mechanism for PACC activation in N. crassa.
糖原是一种广泛存在于微生物和动物细胞中的多糖,其代谢受到复杂的调控。在特定情况下,糖原的积累是由于糖原合酶和糖原磷酸化酶活性之间的平衡,分别控制着合成和降解。这些酶在转录和翻译后水平受到高度调控。在粗糙脉孢菌(Neurospora crassa)编码糖原合酶(gsn)的基因启动子中存在 Aspergillus nidulans pH 响应转录因子 PacC 的 DNA 模体,这促使我们研究该转录因子是否调节糖原积累。在粗糙脉孢菌(Neurospora crassa)和酿酒酵母(Saccharomyces cerevisiae)等真菌中,像 PacC 这样的转录因子和 Rim101p 参与了信号通路,通过诱导碱性基因的表达和抑制酸性基因的表达,介导了对环境 pH 的适应。我们在这里表明,在 pH 7.8 时,野生型粗糙脉孢菌(Neurospora crassa)中 pacC 过度表达,gsn 下调,同时糖原积累减少。在 pacC(KO)菌株中,碱性 pH 下的糖原水平和 gsn 表达分别与野生型菌株在正常 pH(5.8)下相似且高于野生型菌株。这些结果将 gsn 表征为酸性基因,并表明 PACC 在 gsn 表达中的调节作用。含有特定结合 PacC 模体的 gsn DNA 片段的截断重组蛋白与来自在正常和碱性 pH 下生长的细胞的提取物特异性结合。在 ChIP-PCR 分析中证实了在正常和碱性 pH 下从细胞提取物中观察到的 DNA-蛋白复合物。这些提取物中存在的 PACC 具有相同的分子量,表明该蛋白在正常 pH 下已经被加工,这与 Aspergillus nidulans 相反。总之,这些结果表明 pH 信号通路通过调节 gsn 表达来控制糖原积累,并表明存在一种不同的机制用于 N. crassa 中 PACC 的激活。