Suppr超能文献

修饰的重要性:RNA修饰在翻译保真度中的作用

The Importance of Being Modified: The Role of RNA Modifications in Translational Fidelity.

作者信息

Agris Paul F, Narendran Amithi, Sarachan Kathryn, Väre Ville Y P, Eruysal Emily

机构信息

The RNA Institute, State University of New York, Albany, NY, United States.

The RNA Institute, State University of New York, Albany, NY, United States.

出版信息

Enzymes. 2017;41:1-50. doi: 10.1016/bs.enz.2017.03.005. Epub 2017 Apr 22.

Abstract

The posttranscriptional modifications of tRNA's anticodon stem and loop (ASL) domain represent a third level, a third code, to the accuracy and efficiency of translating mRNA codons into the correct amino acid sequence of proteins. Modifications of tRNA's ASL domain are enzymatically synthesized and site specifically located at the anticodon wobble position-34 and 3'-adjacent to the anticodon at position-37. Degeneracy of the 64 Universal Genetic Codes and the limitation in the number of tRNA species require some tRNAs to decode more than one codon. The specific modification chemistries and their impact on the tRNA's ASL structure and dynamics enable one tRNA to decode cognate and "wobble codons" or to expand recognition to synonymous codons, all the while maintaining the translational reading frame. Some modified nucleosides' chemistries prestructure tRNA to read the two codons of a specific amino acid that shares a twofold degenerate codon box, and other chemistries allow a different tRNA to respond to all four codons of a fourfold degenerate codon box. Thus, tRNA ASL modifications are critical and mutations in genes for the modification enzymes and tRNA, the consequences of which is a lack of modification, lead to mistranslation and human disease. By optimizing tRNA anticodon chemistries, structure, and dynamics in all organisms, modifications ensure translational fidelity of mRNA transcripts.

摘要

转运RNA(tRNA)反密码子茎环(ASL)结构域的转录后修饰代表了第三个层次、第三种编码方式,对于将信使核糖核酸(mRNA)密码子准确高效地翻译成蛋白质的正确氨基酸序列至关重要。tRNA的ASL结构域修饰是通过酶促合成的,位点特异性地位于反密码子摆动位置34以及反密码子3'端相邻的37位。64种通用遗传密码的简并性以及tRNA种类数量的限制,使得一些tRNA需要解码不止一个密码子。特定的修饰化学及其对tRNA的ASL结构和动力学的影响,使得一个tRNA能够解码同源密码子和“摆动密码子”,或者将识别扩展到同义密码子,同时始终保持翻译阅读框。一些修饰核苷的化学结构使tRNA预先构象化,以读取共享双重简并密码子框的特定氨基酸的两个密码子,而其他化学结构则允许不同的tRNA对四重简并密码子框的所有四个密码子做出反应。因此,tRNA的ASL修饰至关重要,修饰酶和tRNA基因中的突变(其结果是缺乏修饰)会导致错译和人类疾病。通过优化所有生物体中的tRNA反密码子化学结构、结构和动力学,修饰确保了mRNA转录本的翻译保真度。

相似文献

1
The Importance of Being Modified: The Role of RNA Modifications in Translational Fidelity.
Enzymes. 2017;41:1-50. doi: 10.1016/bs.enz.2017.03.005. Epub 2017 Apr 22.
2
tRNA's wobble decoding of the genome: 40 years of modification.
J Mol Biol. 2007 Feb 9;366(1):1-13. doi: 10.1016/j.jmb.2006.11.046. Epub 2006 Nov 15.
3
Decoding the genome: a modified view.
Nucleic Acids Res. 2004 Jan 9;32(1):223-38. doi: 10.1093/nar/gkh185. Print 2004.
4
Celebrating wobble decoding: Half a century and still much is new.
RNA Biol. 2018;15(4-5):537-553. doi: 10.1080/15476286.2017.1356562. Epub 2017 Sep 21.
5
Molecular Coping Mechanisms: Reprogramming tRNAs To Regulate Codon-Biased Translation of Stress Response Proteins.
Acc Chem Res. 2023 Dec 5;56(23):3504-3514. doi: 10.1021/acs.accounts.3c00572. Epub 2023 Nov 22.
6
tRNA's modifications bring order to gene expression.
Curr Opin Microbiol. 2008 Apr;11(2):134-40. doi: 10.1016/j.mib.2008.02.003. Epub 2008 Apr 2.
7
Anticodon domain modifications contribute order to tRNA for ribosome-mediated codon binding.
Biochemistry. 2008 Jun 10;47(23):6117-29. doi: 10.1021/bi702356j. Epub 2008 May 13.
8
Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications.
EMBO Rep. 2008 Jul;9(7):629-35. doi: 10.1038/embor.2008.104. Epub 2008 Jun 13.
9
Effects of tRNA modification on translational accuracy depend on intrinsic codon-anticodon strength.
Nucleic Acids Res. 2016 Feb 29;44(4):1871-81. doi: 10.1093/nar/gkv1506. Epub 2015 Dec 23.
10
Deciphering the reading of the genetic code by near-cognate tRNA.
Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):3018-3023. doi: 10.1073/pnas.1715578115. Epub 2018 Mar 5.

引用本文的文献

1
tRNA Modifications: A Tale of Two Viruses-SARS-CoV-2 and ZIKV.
Int J Mol Sci. 2025 Aug 2;26(15):7479. doi: 10.3390/ijms26157479.
2
MultiV_Nm: a prediction method for 2'-O-methylation sites based on multi-view features.
Front Genet. 2025 May 27;16:1608490. doi: 10.3389/fgene.2025.1608490. eCollection 2025.
3
The detection, function, and therapeutic potential of RNA 2'-O-methylation.
Innov Life. 2025;3(1). doi: 10.59717/j.xinn-life.2024.100112. Epub 2024 Dec 17.
4
Decoding the general role of tRNA queuosine modification in eukaryotes.
Sci Rep. 2025 Jan 2;15(1):345. doi: 10.1038/s41598-024-83451-y.
6
Selenocysteine tRNA methylation promotes oxidative stress resistance in melanoma metastasis.
Nat Cancer. 2024 Dec;5(12):1868-1884. doi: 10.1038/s43018-024-00844-8. Epub 2024 Oct 22.
7
Imino chemical shift assignments of tRNA, tRNA and tRNA from Escherichia coli.
Biomol NMR Assign. 2024 Dec;18(2):323-331. doi: 10.1007/s12104-024-10207-0. Epub 2024 Oct 4.
8
9
Impact of the chemical modification of tRNAs anticodon loop on the variability and evolution of codon usage in proteobacteria.
Front Microbiol. 2024 Aug 5;15:1412318. doi: 10.3389/fmicb.2024.1412318. eCollection 2024.
10
tRNA Modifications and Dysregulation: Implications for Brain Diseases.
Brain Sci. 2024 Jun 25;14(7):633. doi: 10.3390/brainsci14070633.

本文引用的文献

1
Determination of the ribosome structure to a resolution of 2.5 Å by single-particle cryo-EM.
Protein Sci. 2017 Jan;26(1):82-92. doi: 10.1002/pro.3068. Epub 2016 Oct 26.
2
The genetics and pathology of mitochondrial disease.
J Pathol. 2017 Jan;241(2):236-250. doi: 10.1002/path.4809. Epub 2016 Nov 2.
3
Design, synthesis, and testing toward a 57-codon genome.
Science. 2016 Aug 19;353(6301):819-22. doi: 10.1126/science.aaf3639.
4
Non-coding RNAs and disease: the classical ncRNAs make a comeback.
Biochem Soc Trans. 2016 Aug 15;44(4):1073-8. doi: 10.1042/BST20160089.
5
An integrated, structure- and energy-based view of the genetic code.
Nucleic Acids Res. 2016 Sep 30;44(17):8020-40. doi: 10.1093/nar/gkw608. Epub 2016 Jul 22.
6
Structural effects of modified ribonucleotides and magnesium in transfer RNAs.
Bioorg Med Chem. 2016 Oct 15;24(20):4826-4834. doi: 10.1016/j.bmc.2016.06.037. Epub 2016 Jun 18.
8
tRNA wobble modifications and protein homeostasis.
Translation (Austin). 2016 Jan 28;4(1):e1143076. doi: 10.1080/21690731.2016.1143076. eCollection 2016 Jan-Jun.
9
Quality over quantity: optimizing co-translational protein folding with non-'optimal' synonymous codons.
Curr Opin Struct Biol. 2016 Jun;38:102-10. doi: 10.1016/j.sbi.2016.06.002. Epub 2016 Jun 16.
10
Messenger RNA modifications: Form, distribution, and function.
Science. 2016 Jun 17;352(6292):1408-12. doi: 10.1126/science.aad8711.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验