Arimbasseri Aneeshkumar G, Iben James, Wei Fan-Yan, Rijal Keshab, Tomizawa Kazuhito, Hafner Markus, Maraia Richard J
Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 860-0862 Kumamoto, Japan.
RNA. 2016 Sep;22(9):1400-10. doi: 10.1261/rna.056259.116. Epub 2016 Jun 27.
Post-transcriptional modifications of anticodon loop (ACL) nucleotides impact tRNA structure, affinity for the ribosome, and decoding activity, and these activities can be fine-tuned by interactions between nucleobases on either side of the anticodon. A recently discovered ACL modification circuit involving positions 32, 34, and 37 is disrupted by a human disease-associated mutation to the gene encoding a tRNA modification enzyme. We used tRNA-HydroSeq (-HySeq) to examine (3)methyl-cytidine-32 (m(3)C32), which is found in yeast only in the ACLs of tRNAs(Ser) and tRNAs(Thr) In contrast to that reported for Saccharomyces cerevisiae in which all m(3)C32 depends on a single gene, TRM140, the m(3)C32 of tRNAs(Ser) and tRNAs(Thr) of the fission yeast S. pombe, are each dependent on one of two related genes, trm140(+) and trm141(+), homologs of which are found in higher eukaryotes. Interestingly, mammals and other vertebrates contain a third homolog and also contain m(3)C at new sites, positions 32 on tRNAs(Arg) and C47:3 in the variable arm of tRNAs(Ser) More significantly, by examining S. pombe mutants deficient for other modifications, we found that m(3)C32 on the three tRNAs(Ser) that contain anticodon base A36, requires N(6)-isopentenyl modification of A37 (i(6)A37). This new C32-A37 ACL circuitry indicates that i(6)A37 is a pre- or corequisite for m(3)C32 on these tRNAs. Examination of the tRNA database suggests that such circuitry may be more expansive than observed here. The results emphasize two contemporary themes, that tRNA modifications are interconnected, and that some specific modifications on tRNAs of the same anticodon identity are species-specific.
反密码子环(ACL)核苷酸的转录后修饰会影响tRNA结构、对核糖体的亲和力以及解码活性,并且这些活性可以通过反密码子两侧核碱基之间的相互作用进行微调。最近发现的一个涉及第32、34和37位的ACL修饰回路,被编码一种tRNA修饰酶的基因中的人类疾病相关突变所破坏。我们使用tRNA-氢测序(-HySeq)来检测(3)甲基胞嘧啶-32(m(3)C32),它仅在酵母中存在于tRNA(Ser)和tRNA(Thr)的ACL中。与酿酒酵母中报道的所有m(3)C32都依赖于单个基因TRM140不同,裂殖酵母粟酒裂殖酵母的tRNA(Ser)和tRNA(Thr)的m(3)C32分别依赖于两个相关基因之一,trm140(+)和trm141(+),其同源物存在于高等真核生物中。有趣的是,哺乳动物和其他脊椎动物含有第三个同源物,并且在新位点也含有m(3)C,即tRNA(Arg)上的第32位以及tRNA(Ser)可变臂中的C47:3。更重要的是,通过检查缺乏其他修饰的粟酒裂殖酵母突变体,我们发现含有反密码子碱基A36的三种tRNA(Ser)上的m(3)C32需要A37的N(6)-异戊烯基修饰(i(6)A37)。这种新的C32-A37 ACL回路表明i(6)A37是这些tRNA上m(3)C32的前体或必备条件。对tRNA数据库的检查表明,这种回路可能比此处观察到的更广泛。结果强调了两个当代主题,即tRNA修饰是相互关联的,并且相同反密码子身份的tRNA上的一些特定修饰是物种特异性的。