Witek Marta A, Kuiper Emily G, Minten Elizabeth, Crispell Emily K, Conn Graeme L
From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322.
From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322; Department of Biochemistry, Cell and Developmental Biology Program, Emory University School of Medicine, Atlanta, Georgia 30322.
J Biol Chem. 2017 Feb 3;292(5):1977-1987. doi: 10.1074/jbc.M116.752659. Epub 2016 Dec 27.
Capreomycin is a potent ribosome-targeting antibiotic that is an essential component of current antituberculosis treatments, particularly in the case of multidrug-resistant Mycobacterium tuberculosis (Mtb). Optimal capreomycin binding and Mtb ribosome inhibition requires ribosomal RNA methylation in both ribosome subunits by TlyA (Rv1694), an enzyme with dual 2'-O-methytransferase and putative hemolytic activities. Despite the important role of TlyA in capreomycin sensitivity and identification of inactivating mutations in the corresponding Mtb gene tlyA, which cause resistance to capreomycin, our current structural and mechanistic understanding of TlyA action remains limited. Here, we present structural and functional analyses of Mtb TlyA interaction with its obligatory co-substrate for methyltransferase activity, S-adenosyl-l-methionine (SAM). Despite adopting a complete class I methyltransferase fold containing conserved SAM-binding and catalytic motifs, the isolated TlyA carboxyl-terminal domain exhibits no detectable affinity for SAM. Further analyses identify a tetrapeptide motif (RXWV) in the TlyA interdomain linker as indispensable for co-substrate binding. Our results also suggest that structural plasticity of the RXWV motif could contribute to TlyA domain interactions, as well as specific recognition of its two structurally distinct ribosomal RNA targets. Our findings thus reveal a novel motif requirement for SAM binding by TlyA and set the stage for future mechanistic studies of TlyA substrate recognition and modification that underpin Mtb sensitivity to capreomycin.
卷曲霉素是一种强效的靶向核糖体的抗生素,是当前抗结核治疗的重要组成部分,特别是在耐多药结核分枝杆菌(Mtb)的治疗中。卷曲霉素的最佳结合和对Mtb核糖体的抑制需要TlyA(Rv1694)对核糖体两个亚基中的核糖体RNA进行甲基化,TlyA是一种具有双重2'-O-甲基转移酶活性和假定溶血活性的酶。尽管TlyA在卷曲霉素敏感性方面发挥着重要作用,并且在相应的Mtb基因tlyA中鉴定出导致对卷曲霉素耐药的失活突变,但我们目前对TlyA作用的结构和机制的理解仍然有限。在这里,我们展示了Mtb TlyA与其甲基转移酶活性的必需共底物S-腺苷-L-甲硫氨酸(SAM)相互作用的结构和功能分析。尽管TlyA采用了完整的I类甲基转移酶折叠结构,包含保守的SAM结合和催化基序,但分离的TlyA羧基末端结构域对SAM没有可检测到的亲和力。进一步分析确定TlyA结构域间连接子中的一个四肽基序(RXWV)是共底物结合所必需的。我们的结果还表明,RXWV基序的结构可塑性可能有助于TlyA结构域间的相互作用,以及对其两个结构不同的核糖体RNA靶标的特异性识别。因此,我们的研究结果揭示了TlyA结合SAM的新基序要求,并为未来关于TlyA底物识别和修饰的机制研究奠定了基础,这些机制是Mtb对卷曲霉素敏感性的基础。