Banerjee Swati, Mino Rosa E, Fisher Elizabeth S, Bhat Manzoor A
Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
Dev Biol. 2017 Sep 1;429(1):35-43. doi: 10.1016/j.ydbio.2017.06.010. Epub 2017 Jun 9.
Neuron-glial interactions are crucial for growth, guidance and ensheathment of axons across species. In the Drosophila CNS midline, neuron-glial interactions underlie ensheathment of commissural axons by midline glial (MG) cells in a manner similar to mammalian oligodendrocytes. Although there has been some advance in the study of neuron-glial interactions and ensheathment of axons in the CNS midline, key aspects of axonal ensheathment are still not fully understood. One of the limitations has been the unavailability of MG membrane markers that could highlight the glial processes wrapping the axons. Previous studies have identified two key molecular players from the neuronal and glial cell types in the CNS midline. These are the neuronal transmembrane protein Neurexin IV (Nrx IV) and the membrane-anchored MG protein Wrapper, both of which interact in trans to mediate neuron-glial interactions and ensheathment of commissural axons. In the current study, we attempt to further our understanding of MG biology and try to overcome some of the technical difficulties posed by the lack of a robust MG driver that will specifically allow expression or knockdown of genes in MG. We report the generation of BAC transgenic flies of wrapper-GAL4 and demonstrate how these flies could be used as a genetic tool to understand MG biology. We have utilized the GAL4/UAS system to drive GFP-reporter lines (membrane-bound mCD8-GFP; microtubule-associated tau-GFP) and nuclear lacZ using wrapper-GAL4 to highlight the MG cells and/or their processes that surround and perform axonal ensheathment functions in the embryonic midline. We also describe the utility of the wrapper-GAL4 driver line to down-regulate known MG genes specifically in Wrapper-positive cells. Finally, we validate the functionality of the wrapper-GAL4 driver by rescue of wrapper mutant phenotypes and lethality. Together, these studies provide us with a versatile genetic tool to investigate MG functions and will aid in future investigations where genetic screens using wrapper-GAL4 could be designed to identify novel molecular players at the Drosophila midline and unravel key aspects of MG biology.
神经元与神经胶质细胞的相互作用对于跨物种轴突的生长、导向和包裹至关重要。在果蝇中枢神经系统的中线部位,神经元与神经胶质细胞的相互作用是中线胶质(MG)细胞包裹连合轴突的基础,其方式类似于哺乳动物的少突胶质细胞。尽管在中枢神经系统中线部位的神经元与神经胶质细胞相互作用以及轴突包裹的研究方面已经取得了一些进展,但轴突包裹的关键方面仍未完全了解。其中一个限制因素是缺乏能够突出包裹轴突的神经胶质细胞突起的MG膜标记物。先前的研究已经在中枢神经系统中线部位的神经元和神经胶质细胞类型中鉴定出两个关键分子。它们是神经元跨膜蛋白神经纤连蛋白IV(Nrx IV)和膜锚定的MG蛋白包裹蛋白,二者通过反式相互作用来介导神经元与神经胶质细胞的相互作用以及连合轴突的包裹。在当前的研究中,我们试图进一步了解MG生物学,并尝试克服由于缺乏强大的MG驱动子所带来的一些技术难题,该驱动子能够特异性地允许在MG中表达或敲低基因。我们报告了包裹蛋白-GAL4的BAC转基因果蝇的产生,并展示了这些果蝇如何作为一种遗传工具来理解MG生物学。我们利用GAL4/UAS系统,使用包裹蛋白-GAL4来驱动GFP报告基因系(膜结合的mCD8-GFP;微管相关的tau-GFP)和核lacZ,以突出在胚胎中线部位围绕并执行轴突包裹功能的MG细胞和/或其突起。我们还描述了包裹蛋白-GAL4驱动子系在Wrapper阳性细胞中特异性下调已知MG基因的效用。最后,我们通过挽救包裹蛋白突变体表型和致死性来验证包裹蛋白-GAL4驱动子的功能。总之,这些研究为我们提供了一种通用的遗传工具来研究MG功能,并将有助于未来的研究,在这些研究中可以设计使用包裹蛋白-GAL4的遗传筛选来鉴定果蝇中线部位的新分子,并揭示MG生物学的关键方面。