Department of Cell and Developmental Biology, University College London, London, United Kingdom.
Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon, United States of America.
PLoS Biol. 2023 Oct 20;21(10):e3002328. doi: 10.1371/journal.pbio.3002328. eCollection 2023 Oct.
Morphology is a defining feature of neuronal identity. Like neurons, glia display diverse morphologies, both across and within glial classes, but are also known to be morphologically plastic. Here, we explored the relationship between glial morphology and transcriptional signature using the Drosophila central nervous system (CNS), where glia are categorised into 5 main classes (outer and inner surface glia, cortex glia, ensheathing glia, and astrocytes), which show within-class morphological diversity. We analysed and validated single-cell RNA sequencing data of Drosophila glia in 2 well-characterised tissues from distinct developmental stages, containing distinct circuit types: the embryonic ventral nerve cord (VNC) (motor) and the adult optic lobes (sensory). Our analysis identified a new morphologically and transcriptionally distinct surface glial population in the VNC. However, many glial morphological categories could not be distinguished transcriptionally, and indeed, embryonic and adult astrocytes were transcriptionally analogous despite differences in developmental stage and circuit type. While we did detect extensive within-class transcriptomic diversity for optic lobe glia, this could be explained entirely by glial residence in the most superficial neuropil (lamina) and an associated enrichment for immune-related gene expression. In summary, we generated a single-cell transcriptomic atlas of glia in Drosophila, and our extensive in vivo validation revealed that glia exhibit more diversity at the morphological level than was detectable at the transcriptional level. This atlas will serve as a resource for the community to probe glial diversity and function.
形态学是神经元身份的一个决定性特征。与神经元一样,神经胶质细胞也表现出多样的形态,无论是在不同的胶质细胞类型之间,还是在同一胶质细胞类型内,但神经胶质细胞的形态也被认为是具有可塑性的。在这里,我们使用果蝇中枢神经系统(CNS)来探索神经胶质细胞形态和转录特征之间的关系,在果蝇的 CNS 中,神经胶质细胞被分为 5 个主要的类别(外表面和内表面胶质细胞、皮质胶质细胞、包绕胶质细胞和星形胶质细胞),这些细胞在同一类别内表现出形态多样性。我们分析和验证了来自不同发育阶段两个特征明确的组织的果蝇神经胶质细胞的单细胞 RNA 测序数据,这些组织包含不同的电路类型:胚胎腹神经索(VNC)(运动)和成年视叶(感觉)。我们的分析在 VNC 中识别出一种新的形态和转录上明显不同的表面胶质细胞群体。然而,许多神经胶质细胞的形态类别不能在转录上区分,事实上,胚胎和成年星形胶质细胞在转录上是相似的,尽管它们在发育阶段和电路类型上存在差异。虽然我们确实检测到了光叶神经胶质细胞在转录上存在广泛的内类转录组多样性,但这可以完全用神经胶质细胞在最浅层神经丛(神经层)的居住和与之相关的免疫相关基因表达的富集来解释。总之,我们生成了果蝇神经胶质细胞的单细胞转录组图谱,我们广泛的体内验证表明,神经胶质细胞在形态水平上表现出比在转录水平上更多的多样性。这个图谱将成为社区探索神经胶质细胞多样性和功能的资源。