Suppr超能文献

基于7T磁共振图像利用血管特征和结构化随机森林分割血管周围间隙

Segmentation of Perivascular Spaces Using Vascular Features and Structured Random Forest from 7T MR Image.

作者信息

Zhang Jun, Gao Yaozong, Park Sang Hyun, Zong Xiaopeng, Lin Weili, Shen Dinggang

机构信息

Department of Radiology and BRIC, UNC at Chapel Hill, Chapel Hill, NC, USA.

Department of Computer Science, UNC at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Mach Learn Med Imaging. 2016 Oct;10019:61-68. doi: 10.1007/978-3-319-47157-0_8. Epub 2016 Oct 1.

Abstract

Quantitative analysis of perivascular spaces (PVSs) is important to reveal the correlations between cerebrovascular lesions and neurodegenerative diseases. In this study, we propose a learning-based segmentation framework to extract the PVSs from high-resolution 7T MR images. Specifically, we integrate three types of vascular filter responses into a structured random forest for classifying voxels into PVS and background. In addition, we also propose a novel entropy-based sampling strategy to extract informative samples in the background for training the classification model. Since various vascular features can be extracted by the three vascular filters, even thin and low-contrast structures can be effectively extracted from the noisy background. Moreover, continuous and smooth segmentation results can be obtained by utilizing the patch-based structured labels. The segmentation performance is evaluated on 19 subjects with 7T MR images, and the experimental results demonstrate that the joint use of entropy-based sampling strategy, vascular features and structured learning improves the segmentation accuracy, with the Dice similarity coefficient reaching 66 %.

摘要

血管周围间隙(PVSs)的定量分析对于揭示脑血管病变与神经退行性疾病之间的相关性至关重要。在本研究中,我们提出了一种基于学习的分割框架,用于从高分辨率7T MR图像中提取PVSs。具体而言,我们将三种类型的血管滤波器响应集成到一个结构化随机森林中,用于将体素分类为PVS和背景。此外,我们还提出了一种基于熵的新型采样策略,以在背景中提取信息性样本用于训练分类模型。由于三种血管滤波器可以提取各种血管特征,即使是细小和低对比度的结构也能从嘈杂的背景中有效提取。此外,通过利用基于块的结构化标签可以获得连续和平滑的分割结果。在19名具有7T MR图像的受试者上评估了分割性能,实验结果表明,基于熵的采样策略、血管特征和结构化学习的联合使用提高了分割精度,骰子相似系数达到66%。

相似文献

1
Segmentation of Perivascular Spaces Using Vascular Features and Structured Random Forest from 7T MR Image.
Mach Learn Med Imaging. 2016 Oct;10019:61-68. doi: 10.1007/978-3-319-47157-0_8. Epub 2016 Oct 1.
2
Structured Learning for 3-D Perivascular Space Segmentation Using Vascular Features.
IEEE Trans Biomed Eng. 2017 Dec;64(12):2803-2812. doi: 10.1109/TBME.2016.2638918. Epub 2017 Mar 1.
3
Segmentation of perivascular spaces in 7T MR image using auto-context model with orientation-normalized features.
Neuroimage. 2016 Jul 1;134:223-235. doi: 10.1016/j.neuroimage.2016.03.076. Epub 2016 Apr 1.
4
Multi-channel multi-scale fully convolutional network for 3D perivascular spaces segmentation in 7T MR images.
Med Image Anal. 2018 May;46:106-117. doi: 10.1016/j.media.2018.02.009. Epub 2018 Feb 27.
5
Deep-learning-based segmentation of perivascular spaces on T2-Weighted 3T magnetic resonance images.
Front Aging Neurosci. 2024 Aug 29;16:1457405. doi: 10.3389/fnagi.2024.1457405. eCollection 2024.
6
7T-Guided Learning Framework for Improving the Segmentation of 3T MR Images.
Med Image Comput Comput Assist Interv. 2016 Oct;9901:572-580. doi: 10.1007/978-3-319-46723-8_66. Epub 2016 Oct 2.
7
Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
Med Phys. 2016 Dec;43(12):6588-6597. doi: 10.1118/1.4967487.
9
Reconstruction of 7T-Like Images From 3T MRI.
IEEE Trans Med Imaging. 2016 Sep;35(9):2085-97. doi: 10.1109/TMI.2016.2549918. Epub 2016 Apr 1.
10
Learning-Based 3T Brain MRI Segmentation with Guidance from 7T MRI Labeling.
Mach Learn Med Imaging. 2016 Oct;10019:213-220. doi: 10.1007/978-3-319-47157-0_26. Epub 2016 Oct 1.

引用本文的文献

1
Semi-automated Segmentation and Quantification of Perivascular Spaces at 7 Tesla in COVID-19.
Front Neurol. 2022 Apr 1;13:846957. doi: 10.3389/fneur.2022.846957. eCollection 2022.

本文引用的文献

2
Local energy pattern for texture classification using self-adaptive quantization thresholds.
IEEE Trans Image Process. 2013 Jan;22(1):31-42. doi: 10.1109/TIP.2012.2214045. Epub 2012 Aug 17.
3
A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features.
IEEE Trans Med Imaging. 2011 Jan;30(1):146-58. doi: 10.1109/TMI.2010.2064333. Epub 2010 Aug 9.
4
Computer-aided diagnosis scheme for classification of lacunar infarcts and enlarged Virchow-Robin spaces in brain MR images.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3908-11. doi: 10.1109/IEMBS.2008.4650064.
5
Retinal blood vessel segmentation using line operators and support vector classification.
IEEE Trans Med Imaging. 2007 Oct;26(10):1357-65. doi: 10.1109/TMI.2007.898551.
6
An object-based approach for detecting small brain lesions: application to Virchow-Robin spaces.
IEEE Trans Med Imaging. 2004 Feb;23(2):246-55. doi: 10.1109/TMI.2003.823061.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验