Descombes Xavier, Kruggel Frithjof, Wollny Gert, Gertz Hermann Josef
Ariana, common project CNRS/INRIA/UNSA, INRIA, BP93, 2004 route des Lucioles, 06902 Sophia Antipolis Cedex, France.
IEEE Trans Med Imaging. 2004 Feb;23(2):246-55. doi: 10.1109/TMI.2003.823061.
This paper is concerned with the detection of multiple small brain lesions from magnetic resonance imaging (MRI) data. A model based on the marked point process framework is designed to detect Virchow-Robin spaces (VRSs). These tubular shaped spaces are due to retraction of the brain parenchyma from its supplying arteries. VRS are described by simple geometrical objects that are introduced as small tubular structures. Their radiometric properties are embedded in a data term. A prior model includes interactions describing the clustering property of VRS. A Reversible Jump Markov Chain Monte Carlo algorithm (RJMCMC) optimizes the proposed model, obtained by multiplying the prior and the data model. Example results are shown on T1-weighted MRI datasets of elderly subjects.
本文关注从磁共振成像(MRI)数据中检测多个小脑病变。设计了一种基于标记点过程框架的模型来检测血管周围间隙(VRSs)。这些管状空间是由于脑实质从其供应动脉退缩所致。VRS由作为小管状结构引入的简单几何对象描述。它们的辐射特性被嵌入到一个数据项中。一个先验模型包括描述VRS聚类特性的相互作用。一种可逆跳跃马尔可夫链蒙特卡罗算法(RJMCMC)优化了通过将先验模型和数据模型相乘得到的所提出的模型。在老年受试者的T1加权MRI数据集上展示了示例结果。