Suppr超能文献

乳腺钼靶片中乳腺边界和胸肌的全自动分割

Fully automated breast boundary and pectoral muscle segmentation in mammograms.

作者信息

Rampun Andrik, Morrow Philip J, Scotney Bryan W, Winder John

机构信息

School of Computing and Information Engineering, Ulster University, Coleraine, N. Ireland BT52 1SA, United Kingdom.

School of Health Sciences, Institute of Nursing and Health, Ulster University, Newtownabbey, N. Ireland BT37 0QB, United Kingdom.

出版信息

Artif Intell Med. 2017 Jun;79:28-41. doi: 10.1016/j.artmed.2017.06.001. Epub 2017 Jun 9.

Abstract

Breast and pectoral muscle segmentation is an essential pre-processing step for the subsequent processes in computer aided diagnosis (CAD) systems. Estimating the breast and pectoral boundaries is a difficult task especially in mammograms due to artifacts, homogeneity between the pectoral and breast regions, and low contrast along the skin-air boundary. In this paper, a breast boundary and pectoral muscle segmentation method in mammograms is proposed. For breast boundary estimation, we determine the initial breast boundary via thresholding and employ Active Contour Models without edges to search for the actual boundary. A post-processing technique is proposed to correct the overestimated boundary caused by artifacts. The pectoral muscle boundary is estimated using Canny edge detection and a pre-processing technique is proposed to remove noisy edges. Subsequently, we identify five edge features to find the edge that has the highest probability of being the initial pectoral contour and search for the actual boundary via contour growing. The segmentation results for the proposed method are compared with manual segmentations using 322, 208 and 100mammograms from the Mammographic Image Analysis Society (MIAS), INBreast and Breast Cancer Digital Repository (BCDR) databases, respectively. Experimental results show that the breast boundary and pectoral muscle estimation methods achieved dice similarity coefficients of 98.8% and 97.8% (MIAS), 98.9% and 89.6% (INBreast) and 99.2% and 91.9% (BCDR), respectively.

摘要

乳房和胸肌分割是计算机辅助诊断(CAD)系统后续流程中必不可少的预处理步骤。估计乳房和胸肌边界是一项艰巨的任务,尤其是在乳腺X光片中,这是由于存在伪影、胸肌和乳房区域之间的同质性以及皮肤-空气边界处的低对比度。本文提出了一种乳腺X光片中乳房边界和胸肌的分割方法。对于乳房边界估计,我们通过阈值处理确定初始乳房边界,并采用无边缘主动轮廓模型来搜索实际边界。提出了一种后处理技术来纠正由伪影导致的高估边界。使用Canny边缘检测估计胸肌边界,并提出一种预处理技术来去除噪声边缘。随后,我们识别五个边缘特征以找到最有可能是初始胸肌轮廓的边缘,并通过轮廓生长搜索实际边界。将所提方法的分割结果分别与来自乳腺影像分析协会(MIAS)、INBreast和乳腺癌数字存储库(BCDR)数据库的322张、208张和100张乳腺X光片的手动分割结果进行比较。实验结果表明,乳房边界和胸肌估计方法分别在MIAS数据库中实现了98.8%和97.8%的骰子相似系数,在INBreast数据库中实现了98.9%和89.6%的骰子相似系数,在BCDR数据库中实现了99.2%和91.9%的骰子相似系数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验