Pravara Rural Engineering College, Loni (MS), India.
S.G. G. S. I of E & T, Nanded (MS), India.
J Med Syst. 2017 Oct 25;41(12):190. doi: 10.1007/s10916-017-0839-8.
The presence of predominant density region of the pectoral muscle in Medio-Lateral Oblique (MLO) view of the mammograms can affect or bias the results of mammograms processing for breast cancer detection using intensity based methods. Therefore, to improve the diagnostic performance of breast cancer detection using computer-aided system, identification and segmentation of pectoral muscle is an important task. This paper presents, an intensity based approach to identify the pectoral region in mammograms. In the presented approach enhancement mask and threshold technique is used to enhance and select the pectoral region and boundary points respectively, to find the boundary of pectoral muscle. Then curve fitting by Least Square Error (LSE) method is used to refine the rough initial boundaries. The proposed approach was applied on 320 mammograms from mini-Mammographic Image Analysis Society (mini-MIAS) database of 322 mammograms, with acceptable rate of 96.56% from radiologist experts. The performance evaluation for pectoral muscle segmentation, based on Hausdorff distance (H ), False Positive (FP) and False Negative (FN) rate, shows the usefulness and effectiveness of the proposed approach.
在乳房钼靶 X 线摄影的中侧斜(MLO)视图中,胸大肌的主要密度区域的存在可能会影响或偏向基于强度的乳腺癌检测的乳房 X 线摄影处理结果。因此,为了提高计算机辅助系统检测乳腺癌的诊断性能,识别和分割胸大肌是一项重要任务。本文提出了一种基于强度的方法来识别乳房 X 光片中的胸大肌区域。在提出的方法中,使用增强掩模和阈值技术分别增强和选择胸大肌区域和边界点,以找到胸大肌的边界。然后,使用最小二乘误差(LSE)方法进行曲线拟合来细化初始粗糙边界。该方法应用于来自 322 张乳房 X 光片的 mini-Mammographic Image Analysis Society(mini-MIAS)数据库中的 320 张乳房 X 光片,从放射科专家那里获得了可接受的 96.56%的准确率。基于 Hausdorff 距离(H)、假阳性(FP)和假阴性(FN)率的胸大肌分割性能评估表明了该方法的有用性和有效性。