Suppr超能文献

基于遗传算法和形态学选择的乳腺 X 光片中胸肌区域自动分割。

Automatic Pectoral Muscle Region Segmentation in Mammograms Using Genetic Algorithm and Morphological Selection.

机构信息

Key Laboratory of Information Storage System, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, People's Republic of China.

Tencent Inc., Shenzhen, China.

出版信息

J Digit Imaging. 2018 Oct;31(5):680-691. doi: 10.1007/s10278-018-0068-9.

Abstract

In computer-aided diagnosis systems for breast mammography, the pectoral muscle region can easily cause a high false positive rate and misdiagnosis due to its similar texture and low contrast with breast parenchyma. Pectoral muscle region segmentation is a crucial pre-processing step to identify lesions, and accurate segmentation in poor-contrast mammograms is still a challenging task. In order to tackle this problem, a novel method is proposed to automatically segment pectoral muscle region in this paper. The proposed method combines genetic algorithm and morphological selection algorithm, incorporating four steps: pre-processing, genetic algorithm, morphological selection, and polynomial curve fitting. For the evaluation results on different databases, the proposed method achieves average FP rate and FN rate of 2.03 and 6.90% (mini MIAS), 1.60 and 4.03% (DDSM), and 2.42 and 13.61% (INBreast), respectively. The results can be comparable performance in various metrics over the state-of-the-art methods.

摘要

在乳腺 X 线摄影的计算机辅助诊断系统中,由于胸大肌与乳腺实质的纹理相似且对比度低,很容易导致高假阳性率和误诊。胸大肌区域分割是识别病变的关键预处理步骤,而在对比度差的乳腺 X 光片中进行准确分割仍然是一项具有挑战性的任务。为了解决这个问题,本文提出了一种新的方法来自动分割胸大肌区域。该方法结合遗传算法和形态学选择算法,包含四个步骤:预处理、遗传算法、形态学选择和多项式曲线拟合。在不同数据库上的评估结果表明,该方法在 mini MIAS 数据库上的平均 FP 率和 FN 率分别为 2.03%和 6.90%,在 DDSM 数据库上分别为 1.60%和 4.03%,在 INBreast 数据库上分别为 2.42%和 13.61%。该方法在各种指标上的性能可与最先进的方法相媲美。

相似文献

10
Location of mammograms ROI's and reduction of false-positive.乳房X光检查感兴趣区域的定位及假阳性的减少
Comput Methods Programs Biomed. 2017 May;143:97-111. doi: 10.1016/j.cmpb.2017.02.003. Epub 2017 Feb 24.

引用本文的文献

8
PeMNet for Pectoral Muscle Segmentation.用于胸肌分割的PeMNet
Biology (Basel). 2022 Jan 14;11(1):134. doi: 10.3390/biology11010134.

本文引用的文献

4
6
INbreast: toward a full-field digital mammographic database.INbreast:迈向全视野数字化乳腺 X 光摄影数据库。
Acad Radiol. 2012 Feb;19(2):236-48. doi: 10.1016/j.acra.2011.09.014. Epub 2011 Nov 10.
8
Pectoral muscle identification in mammograms.乳腺 X 光片中的胸肌识别。
J Appl Clin Med Phys. 2011 Mar 3;12(3):3285. doi: 10.1120/jacmp.v12i3.3285.
9
Technique for preprocessing of digital mammogram.数字乳腺 X 线摄影的预处理技术。
Comput Methods Programs Biomed. 2012 Aug;107(2):175-88. doi: 10.1016/j.cmpb.2011.05.007. Epub 2011 Jun 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验