Key Laboratory of Information Storage System, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, People's Republic of China.
Tencent Inc., Shenzhen, China.
J Digit Imaging. 2018 Oct;31(5):680-691. doi: 10.1007/s10278-018-0068-9.
In computer-aided diagnosis systems for breast mammography, the pectoral muscle region can easily cause a high false positive rate and misdiagnosis due to its similar texture and low contrast with breast parenchyma. Pectoral muscle region segmentation is a crucial pre-processing step to identify lesions, and accurate segmentation in poor-contrast mammograms is still a challenging task. In order to tackle this problem, a novel method is proposed to automatically segment pectoral muscle region in this paper. The proposed method combines genetic algorithm and morphological selection algorithm, incorporating four steps: pre-processing, genetic algorithm, morphological selection, and polynomial curve fitting. For the evaluation results on different databases, the proposed method achieves average FP rate and FN rate of 2.03 and 6.90% (mini MIAS), 1.60 and 4.03% (DDSM), and 2.42 and 13.61% (INBreast), respectively. The results can be comparable performance in various metrics over the state-of-the-art methods.
在乳腺 X 线摄影的计算机辅助诊断系统中,由于胸大肌与乳腺实质的纹理相似且对比度低,很容易导致高假阳性率和误诊。胸大肌区域分割是识别病变的关键预处理步骤,而在对比度差的乳腺 X 光片中进行准确分割仍然是一项具有挑战性的任务。为了解决这个问题,本文提出了一种新的方法来自动分割胸大肌区域。该方法结合遗传算法和形态学选择算法,包含四个步骤:预处理、遗传算法、形态学选择和多项式曲线拟合。在不同数据库上的评估结果表明,该方法在 mini MIAS 数据库上的平均 FP 率和 FN 率分别为 2.03%和 6.90%,在 DDSM 数据库上分别为 1.60%和 4.03%,在 INBreast 数据库上分别为 2.42%和 13.61%。该方法在各种指标上的性能可与最先进的方法相媲美。