Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan.
Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan;
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5256-E5265. doi: 10.1073/pnas.1617270114. Epub 2017 Jun 12.
Dendritic spines of Purkinje cells form excitatory synapses with parallel fiber terminals, which are the primary sites for cerebellar synaptic plasticity. Nevertheless, how density and morphology of these spines are properly maintained in mature Purkinje cells is not well understood. Here we show an activity-dependent mechanism that represses excessive spine development in mature Purkinje cells. We found that CaMKIIβ promotes spine formation and elongation in Purkinje cells through its F-actin bundling activity. Importantly, activation of group I mGluR, but not AMPAR, triggers PKC-mediated phosphorylation of CaMKIIβ, which results in dissociation of the CaMKIIβ/F-actin complex. Defective function of the PKC-mediated CaMKIIβ phosphorylation promotes excess F-actin bundling and leads to abnormally numerous and elongated spines in mature IPR1-deficient Purkinje cells. Thus, our data suggest that phosphorylation of CaMKIIβ through the mGluR/IPR1/PKC signaling pathway represses excessive spine formation and elongation in mature Purkinje cells.
浦肯野细胞的树突棘与平行纤维末梢形成兴奋性突触,而平行纤维末梢是小脑突触可塑性的主要部位。然而,成熟的浦肯野细胞中的这些树突棘的密度和形态如何得到适当的维持还不是很清楚。在这里,我们展示了一种依赖于活动的机制,该机制可以抑制成熟浦肯野细胞中过度的棘突发育。我们发现 CaMKIIβ 通过其 F-actin 成束活性促进浦肯野细胞中的棘突形成和伸长。重要的是,I 组 mGluR 的激活,而不是 AMPAR 的激活,触发了 PKC 介导的 CaMKIIβ 磷酸化,导致 CaMKIIβ/F-actin 复合物的解离。PKC 介导的 CaMKIIβ 磷酸化功能缺陷促进了过多的 F-actin 成束,并导致成熟的 IPR1 缺陷型浦肯野细胞中异常数量和伸长的棘突。因此,我们的数据表明,通过 mGluR/IPR1/PKC 信号通路对 CaMKIIβ 的磷酸化抑制了成熟浦肯野细胞中过度的棘突形成和伸长。