Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E188-93. doi: 10.1073/pnas.1315541111. Epub 2013 Dec 23.
Cerebellar motor learning is suggested to be caused by long-term plasticity of excitatory parallel fiber-Purkinje cell (PF-PC) synapses associated with changes in the number of synaptic AMPA-type glutamate receptors (AMPARs). However, whether the AMPARs decrease or increase in individual PF-PC synapses occurs in physiological motor learning and accounts for memory that lasts over days remains elusive. We combined quantitative SDS-digested freeze-fracture replica labeling for AMPAR and physical dissector electron microscopy with a simple model of cerebellar motor learning, adaptation of horizontal optokinetic response (HOKR) in mouse. After 1-h training of HOKR, short-term adaptation (STA) was accompanied with transient decrease in AMPARs by 28% in target PF-PC synapses. STA was well correlated with AMPAR decrease in individual animals and both STA and AMPAR decrease recovered to basal levels within 24 h. Surprisingly, long-term adaptation (LTA) after five consecutive daily trainings of 1-h HOKR did not alter the number of AMPARs in PF-PC synapses but caused gradual and persistent synapse elimination by 45%, with corresponding PC spine loss by the fifth training day. Furthermore, recovery of LTA after 2 wk was well correlated with increase of PF-PC synapses to the control level. Our findings indicate that the AMPARs decrease in PF-PC synapses and the elimination of these synapses are in vivo engrams in short- and long-term motor learning, respectively, showing a unique type of synaptic plasticity that may contribute to memory consolidation.
小脑运动学习被认为是由兴奋性平行纤维-浦肯野细胞(PF-PC)突触的长期可塑性引起的,这种可塑性与突触 AMPA 型谷氨酸受体(AMPAR)数量的变化有关。然而,在生理运动学习中,单个 PF-PC 突触中的 AMPAR 是减少还是增加,以及这种变化是否可以解释持续数天的记忆,仍然难以捉摸。我们将定量 SDS 消化冷冻断裂复制品标记 AMPAR 与物理解剖器电子显微镜结合起来,应用于一种简单的小脑运动学习模型,即小鼠水平光运动反应(HOKR)的适应。在 HOKR 训练 1 小时后,短期适应(STA)伴随着靶 PF-PC 突触中 AMPAR 短暂减少 28%。STA 在个体动物中与 AMPAR 减少呈良好相关,并且 STA 和 AMPAR 减少都在 24 小时内恢复到基础水平。令人惊讶的是,连续 5 天每天 1 小时 HOKR 训练后的长期适应(LTA)并没有改变 PF-PC 突触中的 AMPAR 数量,但导致 45%的突触逐渐和持续消除,相应的 PC 棘突在第 5 天训练时丢失。此外,LTA 恢复后的 2 周与控制水平的 PF-PC 突触恢复呈良好相关。我们的研究结果表明,在短期和长期运动学习中,PF-PC 突触中的 AMPAR 减少和这些突触的消除分别是体内记忆痕迹,显示了一种独特的突触可塑性,可能有助于记忆巩固。