Suppr超能文献

集中学习和间隔学习中突触结构可塑性、记忆形成和记忆消退的动力学特征不同。

Distinct kinetics of synaptic structural plasticity, memory formation, and memory decay in massed and spaced learning.

机构信息

Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan.

出版信息

Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E194-202. doi: 10.1073/pnas.1303317110. Epub 2013 Dec 23.

Abstract

Long-lasting memories are formed when the stimulus is temporally distributed (spacing effect). However, the synaptic mechanisms underlying this robust phenomenon and the precise time course of the synaptic modifications that occur during learning remain unclear. Here we examined the adaptation of horizontal optokinetic response in mice that underwent 1 h of massed and spaced training at varying intervals. Despite similar acquisition by all training protocols, 1 h of spacing produced the highest memory retention at 24 h, which lasted for 1 mo. The distinct kinetics of memory are strongly correlated with the reduction of floccular parallel fiber-Purkinje cell synapses but not with AMPA receptor (AMPAR) number and synapse size. After the spaced training, we observed 25%, 23%, and 12% reduction in AMPAR density, synapse size, and synapse number, respectively. Four hours after the spaced training, half of the synapses and Purkinje cell spines had been eliminated, whereas AMPAR density and synapse size were recovered in remaining synapses. Surprisingly, massed training also produced long-term memory and halving of synapses; however, this occurred slowly over days, and the memory lasted for only 1 wk. This distinct kinetics of structural plasticity may serve as a basis for unique temporal profiles in the formation and decay of memory with or without intervals.

摘要

长时记忆是在刺激时间分布(间隔效应)时形成的。然而,这种强大现象背后的突触机制以及学习过程中发生的突触修饰的确切时间进程仍不清楚。在这里,我们检查了在不同时间间隔下进行 1 小时密集和间隔训练的小鼠的水平视动反应的适应情况。尽管所有训练方案的获得情况相似,但 1 小时的间隔训练在 24 小时时产生了最高的记忆保留,并且可以持续 1 个月。记忆的独特动力学与小脑绒球平行纤维-浦肯野细胞突触的减少密切相关,但与 AMPA 受体(AMPAR)数量和突触大小无关。在间隔训练后,我们观察到 AMPAR 密度、突触大小和突触数量分别减少了 25%、23%和 12%。在间隔训练后的 4 小时,一半的突触和浦肯野细胞树突已经被消除,而剩余突触中的 AMPAR 密度和突触大小得到了恢复。令人惊讶的是,密集训练也产生了长期记忆和突触的减半;然而,这需要数天的时间才能缓慢发生,并且记忆只能持续 1 周。这种独特的结构可塑性动力学可能是形成和消除记忆的独特时间特征的基础,无论是否有间隔。

相似文献

1
Distinct kinetics of synaptic structural plasticity, memory formation, and memory decay in massed and spaced learning.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E194-202. doi: 10.1073/pnas.1303317110. Epub 2013 Dec 23.
2
Distinct cerebellar engrams in short-term and long-term motor learning.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E188-93. doi: 10.1073/pnas.1315541111. Epub 2013 Dec 23.
3
Role of cerebellar cortical protein synthesis in transfer of memory trace of cerebellum-dependent motor learning.
J Neurosci. 2011 Jun 15;31(24):8958-66. doi: 10.1523/JNEUROSCI.1151-11.2011.
4
The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes.
J Neurosci. 2017 May 10;37(19):4992-5007. doi: 10.1523/JNEUROSCI.2607-16.2017. Epub 2017 Apr 21.
6
8
Specific plasticity of parallel fiber/Purkinje cell spine synapses by motor skill learning.
Neuroreport. 2002 Sep 16;13(13):1607-10. doi: 10.1097/00001756-200209160-00007.
9
The right time to learn: mechanisms and optimization of spaced learning.
Nat Rev Neurosci. 2016 Feb;17(2):77-88. doi: 10.1038/nrn.2015.18.
10
Modeling memory consolidation during posttraining periods in cerebellovestibular learning.
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3541-6. doi: 10.1073/pnas.1413798112. Epub 2015 Mar 3.

引用本文的文献

1
A thalamic hub-and-spoke network enables visual perception during action by coordinating visuomotor dynamics.
Nat Neurosci. 2025 Mar;28(3):627-639. doi: 10.1038/s41593-025-01874-w. Epub 2025 Feb 10.
2
Plastic vasomotion entrainment.
Elife. 2024 Apr 17;13:RP93721. doi: 10.7554/eLife.93721.
3
Unraveling the mysteries of dendritic spine dynamics: Five key principles shaping memory and cognition.
Proc Jpn Acad Ser B Phys Biol Sci. 2023;99(8):254-305. doi: 10.2183/pjab.99.018.
4
Molecular insights from the crab memory model.
Front Mol Neurosci. 2023 Jun 21;16:1214061. doi: 10.3389/fnmol.2023.1214061. eCollection 2023.
5
Synaptic pruning through glial synapse engulfment upon motor learning.
Nat Neurosci. 2022 Nov;25(11):1458-1469. doi: 10.1038/s41593-022-01184-5. Epub 2022 Nov 1.
6
Contributions of extracellular-signal regulated kinase 1/2 activity to the memory trace.
Front Mol Neurosci. 2022 Oct 5;15:988790. doi: 10.3389/fnmol.2022.988790. eCollection 2022.
7
Anesthesia Resistant Memories in Drosophila, a Working Perspective.
Int J Mol Sci. 2022 Jul 31;23(15):8527. doi: 10.3390/ijms23158527.
8
The neural substrate of spatial memory stabilization depends on the distribution of the training sessions.
Proc Natl Acad Sci U S A. 2022 Apr 5;119(14):e2120717119. doi: 10.1073/pnas.2120717119. Epub 2022 Mar 29.
9
Spaced training enhances equine learning performance.
Anim Cogn. 2022 Jun;25(3):683-690. doi: 10.1007/s10071-021-01580-7. Epub 2021 Dec 3.
10
Three-Dimensional Structure of Dendritic Spines Revealed by Volume Electron Microscopy Techniques.
Front Neuroanat. 2021 May 31;15:627368. doi: 10.3389/fnana.2021.627368. eCollection 2021.

本文引用的文献

1
Distinct cerebellar engrams in short-term and long-term motor learning.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E188-93. doi: 10.1073/pnas.1315541111. Epub 2013 Dec 23.
2
MAPK establishes a molecular context that defines effective training patterns for long-term memory formation.
J Neurosci. 2013 Apr 24;33(17):7565-73. doi: 10.1523/JNEUROSCI.5561-12.2013.
3
Distributed synergistic plasticity and cerebellar learning.
Nat Rev Neurosci. 2012 Sep;13(9):619-35. doi: 10.1038/nrn3312. Epub 2012 Aug 16.
4
MEF2 negatively regulates learning-induced structural plasticity and memory formation.
Nat Neurosci. 2012 Sep;15(9):1255-64. doi: 10.1038/nn.3189. Epub 2012 Aug 12.
5
Molecular determinants of the spacing effect.
Neural Plast. 2012;2012:581291. doi: 10.1155/2012/581291. Epub 2012 Mar 22.
6
Synaptic evidence for the efficacy of spaced learning.
Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):5121-6. doi: 10.1073/pnas.1120700109. Epub 2012 Mar 12.
7
AMPA receptor regulation during synaptic plasticity in hippocampus and neocortex.
Semin Cell Dev Biol. 2011 Jul;22(5):514-20. doi: 10.1016/j.semcdb.2011.06.007. Epub 2011 Aug 12.
8
Role of cerebellar cortical protein synthesis in transfer of memory trace of cerebellum-dependent motor learning.
J Neurosci. 2011 Jun 15;31(24):8958-66. doi: 10.1523/JNEUROSCI.1151-11.2011.
9
Reevaluating the role of LTD in cerebellar motor learning.
Neuron. 2011 Apr 14;70(1):43-50. doi: 10.1016/j.neuron.2011.02.044.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验